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Introduction

First introduced by May in [May72], operads are a crucial part of modern
mathematics. Roughly speaking, an operad is a sequence (2 (n))nen where
P(n) corresponds to a collection of n-ary operations. These are equipped
with certain structure morphisms corresponding to inserting the result of
an operation into another one, and these structure maps are subject to
certain relations dictated by the fact that a different ordering of multiple
insertions may yield the same result. Thus, beyond their initial application
in homotopy theory, operads provide a general framework for dealing with
“structures with (higher) operations”.

The main parts of this thesis assume some familiarity with basics of
operads. We refer to [LV12] for a contemporary depiction of various aspects
of them.

As monoid objects in an abelian category with a monoidal structure, op-
erads can be considered as generalizations of rings and thus algebraic objects
on their own. In fact, one of the important breakthroughs in the theory of
operads was the generalization of concepts such as quadratic algebras, their
Manin products and Koszul duality to the context of operads as initiated by
Ginzburg and Kapranov in [GK94]. This thesis deals with two phenomena
that are significant examples of this aspect of operads.

The first section of this thesis is dedicated to considering quadratic al-
gebras and ultimately quadratic operads as an instance of a general concept
of duality. This concept, which Boyarchenko and Drinfeld study in [BD13]
under the name of “Grothendieck—Verdier categories”, deals with monoidal
categories (M, ®, 1) together with a “dualizing object” K € M such that
for every Y € M, the functor X — Hom(X ® Y, K) is representable by an
object D(Y) € M and such that these objects can be assembled into an
equivalence D: M — M (cf. Definition 1.4). It is an abstract formulation
of Verdier duality and other similar phenomena in algebraic geometry.

As pointed out by Manin in [Manl17], quadratic algebras and quadratic
operads yield examples of Grothendieck—Verdier categories where the monoi-
dal structure is given by the respective black product and the duality functor
D is given by the respective quadratic duality (cf. Remark 1.17 and Corol-
lary 1.45). However, it turns out that these examples unfortunately do not
satisfy many properties which are prominent in other examples (cf. [BD13,
1.2]). For example, the dualizing object is not the monoidal unit (cf. Propo-
sition 1.22 resp. Proposition 1.48). Moreover, for quadratic operads, one
cannot even construct a comparison morphism X®Y — D~}H(D(X)®D(Y))
(cf. Proposition 1.49).

The other example of operadic algebra which this thesis deals with is
the Koszul duality between the hypercommutative operad and the gravity
operad. The hypercommutative operad is given by the homology of com-
pactified moduli spaces of marked genus 0 curves and has been important in



mathematical physics since Kontsevich and Manin showed in [KM94] that
the quantum cohomology of a projective variety (over Q) yields a hypercom-
mutative algebra. The gravity operad, as shown by Ginzburg and Kapranov
in [GK94] and by Getzler in [Get95], is the Koszul dual of the hypercom-
mutative operad and related to the moduli spaces of smooth marked genus
0 curves. This can be seen as an analogue of the Koszul duality between
the commutative and the Lie operad — in fact, the former is a suboperad of
the hypercommutative operad and the latter is a suboperad of the gravity
operad.

Based on the approach of [GK94] and [Get95], the second section of this
thesis gives a detailed description of the gravity operad (cf. Subsection 2.1)
and concludes with its relation to the hypercommutative operad via Koszul
duality (cf. Theorem 2.7). This approach to the gravity operad uses some
geometric properties of moduli spaces of marked genus 0 curves extensively.
Therefore, the required results about these moduli spaces are reviewed in
Appendix B. Moreover, Appendix A deals with basics on trees, which are
crucial in dealing with operads and stratifications of the above mentioned
compactified moduli spaces.

Notations and Conventions

Here we fix some notations and conventions which are used throughout
the thesis.

Notation 0.1. When dealing with functors and natural transformations,
we usually use the symbols A, B, @ and @ as variables which can stand
for both objects and morphisms. For example, the Hom-functor could be
denoted by Hom(m, ®).

For monoidal categories, we use standard terminology which can be
found, for example, in [Mac98] or [BL11].

Notation 0.2. When we say that (M, ®, 1, a, A, p) is a monoidal category
we mean the following:

e M is the underlying category,

e ®: M x M — M is the monoidal product,

e 1 € M is the unit object,

e a: (HRO®)®e=H1QX (&R @) is the associator,

e \: 1 ® M = M is the left unitor,

e p: B®1 = M is the right unitor.

We may suppress parts of this data when they are clear from the context.

Notation 0.3. When dealing with braided monoidal categories we will de-
note the braiding B Q @ = @ @ B with 7.

We also need to fix notation for some concepts from basic (linear) alge-
bra.



Notation 0.4. We denote by 3, the symmetric group on n letters.

Convention 0.5. o For a set S, let C° denote the free C-vector space
on S. When working with graded vector spaces, we put each basis
element of S into degree 1, so that C° is concentrated in degree 1.

» For a finite dimensional (graded) C-vector space V let det(V') denote
its determinant, i.e. its highest exterior power /\dimv V. Note that if
V is concentrated in degree k, then det(V) is concentrated in degree
k- dim(V).

Remark 0.6. The functor

FinSet — GrVectg
S — det(C*)

from the category of finite sets to the category of graded C-vector spaces can
be made into a strong monoidal functor (FinSet, 11, &§) — (GrVecte, ®¢, C).
Indeed, we have an isomorphism A’ CZ =~ C and for finite sets S, S’ there
is a natural isomorphism

det(C%) ® det(CY) = det(C)

(V1A AV ® (V] Ao AV[gr) = (VLA L AV AV A LA Yg))
We we will often have a decomposition S = S'US” of a finite set as a

disjoint union and consider the induced isomorphism det(C%") ® det(C*") =

det(C®) on determinants. Such isomorphisms will be denoted by ¢ with

some decoration.

Next, we fix some conventions about operads. As mentioned before, we
will not review the general theory of operads, but instead use [LV12] as a
reference.

Convention 0.7. e By a Y-module in a category C we mean collection
E = (E(n))nen, of objects in C such that each E(n) is equipped with
an action of 3,. Morphisms of ¥-modules are defined to be levelwise
equivariant morphisms.

e By a (co)operad we mean a non-unital symmetric (co)operad. While
dealing with concrete (co)operads, we will use the definition given by
infinitesimal (co)compositions. Sometimes we will consider elements of
the n-th level of an operad as n-ary operations. We refer to [LV12, 5.3]
for a various definitions of operads and to [LV12, 5.7] for cooperads.

o For a ¥-module E, by F(E) we denote the free operad generated by
E (as in [LV12, 5.4] and [GK94, 2.1]).

o For an operad &, we denote by QP its cobar construction (as in [LV12,
6.5] and [GK94, 2.1]).



We will also need some notation about (co)homology of spaces.

Notation 0.8. Let X, Y be spaces.
o When no explicit coefficients are given, He(X) resp. H*(Y') will denote
homology resp. cohomology with C-coefficients.
o The Kiinneth isomorphisms He (X XY) = He(X)®H.(Y) and H*(X x
Y)= H*(X)®H*(Y) (in C-coefficients) as well as variations of these
will be denoted by k.
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1 Grothendieck—Verdier Categories and Manin Prod-
ucts

In this section we interpret Manin products of quadratic algebras (as
defined in [Man87]) resp. quadratic operads (as defined in [GK95]) in the
context of Grothendieck—Verdier categories, i.e. monoidal categories with a
“dualizing object”.

The moral of our considerations can be summarized as follows: Both for
quadratic algebras and quadratic operads the respective white product can
be obtained by transferring the respective black product along the respective
quadratic duality, which yields examples of Grothendieck—Verdier categories.
However, neither of these examples are r-categories. For quadratic algebras,
one can still construct a comparison morphism between the two monoidal
products in question even though these do not form an r-category.

We mostly follow the conventions of Boyarchenko and Drinfeld from
[BD13], but variants of the concept that they call “Grothendieck—Verdier
categories” was studied by Barr under the name of “*-autonomous cate-
gories” in [Bar79] and later works. It was observed in [Man17] that quadratic
algebras and quadratic operads fit into the framework of Grothendieck—
Verdier categories and we elaborate on the ideas presented there.

1.1 The Setup

We start with some generalities about transferring monoidal structures
along equivalences.

Notation 1.1. For the rest of this subsection we fix a monoidal category
(M,®,1,a, A, p) and an equivalence D: M — MP°P. Further, we fix a quasi-
inverse D~!: M° — M along with natural isomorphisms n: D™1D = idy
and e: DD~ >~ idpjop.

Remark 1.2. Transferring the monoidal structure on M and its opposite
along D, we obtain new monoidal structures on M:
(M,©, D~Y(1),a, A, p) is given by the product

ECe =D (D(m)® D(w)),
where the associator & is the composition

D=H(D(D~!(D(m) ® D(w))) ® D(®))

D) D Y((D(m)® D(®)) ® D(®))
D), D Y(D(m)® (D(#) ® D(w)))

D (dge™) D Y(D(m)®D(D"}(D(®)® D(®)))),



the left unitor X is given by

D1 (e®id)

_
—1/y—1

$> D—l(D(.))

n
= |

and the right unitor p by

D~ (id®e) Dil(D(.) ®]].)
D) D-Y(D(m))
I, m.

Similarly, (M, ®, D~1(1), &, A,p) is given by
EOe =D (D(#)®D(m)

and the “reversed” associator resp. unitors. In other words, (M, ®, D1(1))
is the opposite of the monoidal structure (M, O, D~1(1)).

In [BD13] the authors work with ®, but we will work with © which fits
better to the classical definition of black and white products of quadratic
algebras resp. operads.

Next, we recall some definitions from [BD13].

Definition 1.3. An object K € M is called dualizing if for every Y € M
the functor Hom(BM® Y, K) is representable by an object D(Y) € M (in
which case these objects can be assembled into a functor D: M — M°®P)
and D: M — MP°P is an equivalence.

Definition 1.4. A Grothendieck—Verdier category (or GV category) is a
monoidal category together with a dualizing object.

Definition 1.5. A Grothendieck—Verdier category is called an r-category if
the chosen dualizing object is the monoidal unit. (In particular, in this case
the monoidal unit is a dualizing object.)

If one also assumes that the Grothendieck—Verdier category in ques-
tion is an r-category, one can easily construct a natural transformation
HX® e = H(G ® which is compatible with the respective associators. How-
ever, in the cases of quadratic algebras resp. operads with the black product,
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which are of interest for us, the monoidal unit is not a dualizing object (cf.
Proposition 1.22 resp. Proposition 1.48). In the case of quadratic algebras
a morphism between the two products can still be constructed even though
quadratic algebras with quadratic duality do not form an r-category (cf.
Proposition 1.23).

1.2 Quadratic Algebras

We start by establishing some conventions and recalling some definitions.

Notation 1.6. We fix a ground field k for the rest of this section. All
algebras, vector spaces etc. are going to be over k.

The operation B* will denote k-duality, i. e. the functor Homy (M, k). For
a subspace W of a k-vector space V, we will denote by W+ the subspace
{feV*|VweW: f(w)=0} c V*.

Moreover, ® will denote the tensor product over k. While working with
such concrete monoidal structures, we will be less pedantic about the asso-
ciators and unitors.

Definition 1.7. o A quadratic algebra A = @, An is an IN-graded
algebra which is a quotient of a free algebra F(V') on a finite dimen-
sional IN-graded vector space which is concentrated in degree 1 by an
ideal generated by a space of relations RS V®V = F(V),.

e The category QA of quadratic algebras has as objects quadratic alge-
bras and as morphisms algebra morphisms which respect the grading.

Notation 1.8. Given a quadratic algebra A, Ap is its space of generators.
We will denote its space of relations by R(A) € 41 ® A;.
Given a finite dimensional vector space V and a subspace R € V®V,

A(V, R) will denote the quadratic algebra F(V)/(R).

Remark 1.9. Given quadratic algebras A and B, restriction to the first
graded piece induces a bijection

Homqa (4, B) = {f € Hom(A1, B1) | (f ® f)(R(4)) € R(B)}
by the universal property of free algebras and quotient algebras.
Definition 1.10. The gquadratic dual construction on QA is given by

' = A(m},R(m)")
where we implicitly identify B} @ B} with (H; @ H;)*.

Remark 1.11. The quadratic dual construction defines an equivalence
QA — QA°P. Indeed, identifying the double dual of a finite dimensional
vector space with the space itself and the “double complement” of a subspace
with itself, we see that ((m)')' ~ m.

As we are going to see in Corollary 1.19, this equivalence is in fact
induced by a dualizing object with respect to a monoidal structure on QA.
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We now recall the definitions of black and white products of quadratic
algebras following [Man87].

Notation 1.12. Let 023 denote the natural transformation
ARQERXORXO®=AR0RIAR G
which swaps the second and the third component.

Definition 1.13. The black product of quadratic algebras is defined as
He @ = A(.l ® '1,0’2,3(R<.) ®R(.)))

Remark 1.14. Let V be a finite-dimensional vector space, R € V& V
a subspace. Consider the natural isomorphism p: V ® k =~ V given by the
right unitor of the monoidal structure on k-vector spaces. Then, F(p)2: (V®
E)®(V®k)=V®V maps 023(R® k® k) isomorphically to R. Thus, by
Remark 1.9, we have a natural isomorphism A(V, R) e A(k,k®Fk) =~ A(V, R)
of quadratic algebras.

In fact, also the left unitor, the associator and the braiding of (Vecty, ®k, k)
extend in a similar way to quadratic algebras to yield a symmetric monoidal
structure on QA with e as the monoidal product and A(k,k ® k) as the
monoidal unit.

Definition 1.15. The white product of quadratic algebras is defined as
moe =AM, @®,0:3(R(m) ® 0% + mP> @ R(e))).

Remark 1.16. Let V be a finite-dimensional vector space, RS V®V a
subspace. Consider the natural isomorphism p: V®k = V given by the right
unitor of the monoidal structure on k-vector spaces. Then, F(p)2: (V®k)®
(V®Ek) =2 V®V maps 023(ROLkREk) = 023(RILEkRk+V RV ®0)
isomorphically to R. Thus, by Remark 1.9, we have a natural isomorphism
A(V,R) o A(k,0) = A(V, R) of quadratic algebras.

In fact, also the left unitor, the associator and the braiding of (Vecty, ®x, k)
extend in a similar way to quadratic algebras to yield a symmetric monoi-
dal structure on QA with o as the monoidal product and A(k,0) as the
monoidal unit.

Remark 1.17. The monoidal structure of Remark 1.16 is essentially the
one obtained by transferring the black product along the quadratic dual
construction (as in Remark 1.2). Indeed, given two quadratic algebras A
and B, the generating space of (A' e B')" is

( T@BTYX‘ = ((Al ®B1)*)* = A1 @Bl = (AOB)l
and its space of relations is given by
o23(R(A) @R(B))" = a3(R(A)) @ ((B))®* + ((A)*)** @ (R(B)1)")
~ g9 3(R(A) ® BY? + A2? @ R(B)) = R(A o B).
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In order to put quadratic algebras into the context of GV categories, we
will need the following adjunction.

Remark 1.18. Let V,W, X be finite-dimensional vector spaces and R <
VeV, S WW resp. T € X ® X subspaces. Consider the natural
isomorphism

Homy (V@ W, X) =~ Homg(V,W*® X). (1.1)

For f € Homy(V ® W, X) and its adjoint fe Homy (V, W* ® X) we have
F(f)2(023(R®S)) < T if and only if F(f)2(R) S 023(ST@X®? + (W*)®?®
T).

Thus, by Remark 1.9, the isomorphism of (1.1) extends to a natural
adjunction isomorphism

Homqa (A(V, R) « A(W, S), A(X,T)) = Homqa (A(v, R),A(W,S) o A(X, T)) :

Now that we have the required tools about quadratic algebras at hand,
we can interpret these in the context of GV categories as it was remarked
in [Manl7].

Corollary 1.19. The unit A(k,0) of the white product of quadratic algebras
s a dualizing object for the black product of quadratic algebras since for all
A€ QA, the functor Homqa (B e A, A(k,0)) = Homqa (W, A' 0 A(k,0)) is
representable by A' o A(k,0) =~ A"

Next, we want to show that QA together with the black product is not
an r-category.

Definition 1.20. e We call a quadratic algebra A a square-zero exten-
sion if R(A) = A1 ® A;.
o Given a finite-dimensional vector space V', we denote by SqZ(V') the
square-zero extension A(V,V @ V).

Remark 1.21. If A is a square-zero extension and B a quadratic algebra,
then Homqa (B, A) = Homy(B1, A1) via restriction to the first graded piece.

Indeed, every algebra morphism f: B — A is uniquely determined by its
restriction fi: By — A; by Remark 1.9 and the condition (f1 ® f1)(R(B)) <
R(A) is trivially fulfilled if R(A) = A; ® Aj, so every linear map By — A;
extends to an algebra homomorphism B — A.

Proposition 1.22. The monoidal unit A(k,k ® k) of the black product
of quadratic algebras is not a dualizing object, i. e. there is no equivalence
D: QA — QAP s.t. for all B € QA the functor Homqa (B e B, A(k,k ® k))
is represented by D(B).

13



Proof. Note that A(k,k ® k) is a square-zero extension. Hence, by Re-
mark 1.21, for A, B € QA we have isomorphisms

Homqa (W e B, A(k,k®Fk)) =~ Homy((We B)1,A(k,k®k)1)
= Homy (M ® By, k)
~ Homy (M, BY)
x>~ HomQA(I, SqZ(BT)) .

Thus, if A(k,k® k) were a dualizing object, D(B) would be isomorphic
to SqZ(B7) by the uniqueness of representing objects. However, a functor
with such values on objects cannot be an essentially surjective since (for
instance) the quadratic algebra A(k,0) is not in its essential image because
it is not a square-zero extension. ]

Even though the monoidal unit of e is not a dualizing object, we can
still obtain a natural transformation from e to o.

Proposition 1.23. Given quadratic algebras A and B, the identity mor-
phism A1 ® B1 — A1 ® B extends to a natural morphism Ae B — Ao B
which is compatible with the respective associators.

Proof. Since
02,3(R(M) @ R(®)) € o3(R(W) @ #F” + WP @ R(w)),

the identity map A; ® By — A1 ® B; extends to a morphism Ae B — Ao B
of quadratic algebras by Remark 1.9.

Since the associator of e resp. o is an extension of the associator of ® on
the level of generators, the compatibility with the associators follows from
the compatibility of the identity map with the associators on the level of
generators. O

1.3 Quadratic Operads

In this subsection, we are going to deal with operadic analogues of the
constructions and phenomena we have seen in the previous subsection. For
this we will be dealing with quadratic operads which were introduced in
[GK94]. Since some of our definitions are slightly different from the usual
ones, we will be more explicit than while we were working with quadratic
algebras even though everything is in direct analogy with their counterparts
in the usual theory of quadratic duality for quadratic operads.

Definition 1.24. o A (binary) quadratic operad is an operad (P(n))pen
which is a quotient of a free operad §(F) on a X-module F in the
category of finite dimensional k-vector spaces which is concentrated in
degree 2 (i.e. E(n) =~ 0 for n # 2) by an operadic ideal generated by
a subrepresentation of relations R < F(FE)(3).

14



e The category QO of quadratic operads has as objects quadratic op-
erads and as morphisms morphisms of operads, i.e. morphisms of -
modules compatible with operadic compositions.

Notation 1.25. Given a quadratic operad P, P(2) is its space of generators.
We will denote its representation of relations by R(P) < P(3).

Given a finite dimensional representation V' of s, we will abuse notation
and identify if with the Y-module F with E(2) = V and E(n) = 0 for
n # 2. We will denote the quadratic operad generated by V with relations
RS §(V)(3) by B(V, R).

Remark 1.26. Given quadratic operads &P and Q, restriction to the spaces
of generators induces a bijection

Homqo(%,Q) = {f € Homs, (2(2),(2)) | (§()(3))(R(P)) = R(Q)}
by the universal property of free operads and quotient operads.

Next, we will need some conventions and remarks about representations
and their tensor products.

Definition 1.27. Given a representation V' of the symmetric group X,,
n € IN, its dual V* has as underlying vector space Homy(V, k) and each
o€ X, acts via (o - f)(v) = f(o™!-v).

Remark 1.28. Given a subrepresentation W of a X,,-representation V', the
k-subspace W+ < V* is 3, -invariant, thus naturally a 3,-representation.

Remark 1.29. Given representations V', W of ¥,,, V® W can be endowed
with a natural action of ¥, via o- (vQw) = (0-v) ® (0 - w) for o € %,,.

Remark 1.30. For all ¥, -representations V and V the natural k-linear
evaluation maps
v (f e fv)

and

VEQW* — (VW)
f®g— (v®@w— f(v)- g(w))

are YX,-equivariant.

In particular if the representations in question are finite dimensional, we
obtain isomorphisms V = (V*)* and V* @ W* =~ (V ® W)* of represen-
tations. In the following, whenever we write an isomorphism between such
representations, we will be using the above mentioned evaluation map.

15



Convention 1.31. Let V be a 3s-representation. Note that we have an
isomorphism

SV)IB)=(VeV)o(VeV)e(VeV)

of k-vector spaces, where the summands correspond to the three composition
schemes for producing a (symmetric) ternary operation from two (symmet-
ric) binary operations. In the language of graftings, these schemes are given
as follows:

(N ©1 V)(a7 b, C) = u(u(a, b)? C),
(no2v)(a,b,¢) = p(a,v(b,c)),
((02,3)(/1’ o1 V))(au b, C) = M(V(au C), b),

where o9 3 € X3 is the permutation which swaps 2 and 3.
We will denote the collection of these composition schemes by 6 and use
the symbols o, o, etc. to refer to generic elements of this collection.

Remark 1.32. Let V be a finite dimensional Yo-representation. Then,
using the description of F(V)(3) and F(V*)(3) as in Convention 1.31, the
evaluation morphisms of Remark 1.30 yield an isomorphism

1 (a0 _
or s [vo, v — f(v)f(v) Ot = Oy
fouf ( “ 0 otherwise
which is Y3-equivariant. In the following, whenever we write an isomorphism
between a representation of the form F(V*)(3) and a representation of the
form F(V*)(3), we will be using this map.

Now we move on to define quadratic duality of operads. Our notion of
quadratic duality differs from the one in [GK94] because we do not twist
dual representations by the sign representation. With the original defini-
tion, quadratic operads still would not form an r-category since an analogue
of Proposition 1.48 would apply, but the non-existence of a comparison mor-
phism from the black product to the white product (cf. Proposition 1.49)
would merely be a sign issue on the level of generators. We use the non-
twisted version to emphasize that there is (also) a problem on the level of
relations.

Definition 1.33. The quadratic dual construction on QO is given by

m = P((m(2)*, R(m))

where we identify i(m)- < F(m)(3)* with a subrepresentation of F(m*)(3)
via the isomorphism of Remark 1.32.

16



Remark 1.34. As in the case of quadratic algebras, the quadratic dual
construction defines an equivalence QO — QO®P. Indeed, identifying the
double dual of a finite representation with itself and the “double comple-
ment” of a subrepresentation with itself, we see that ((m)')' =~ m.

As in the case of quadratic algebras, we will see in Corollary 1.47 that
this equivalence is in fact induced by a dualizing object with respect to a
monoidal structure on QO.

We are now going to define black and white products of quadratic op-
erads. These were introduced in [GK94] and their definition was corrected
in [GK95]. A more conceptual treatment which can also be applied to e. g.
properads can be found in [Val08]. Similar to the case of quadratic duality,
our definition of the black product differs from the usual ones by a sign.

We begin by defining some auxiliary maps.

Definition 1.35. Let V, W be finite dimensional representations of 3.
e The natural morphism

¢V F(V@W)(3) - F(V)(3) @ F(W)(3)

is given by the fact that the tensor product of a F(V')-algebra A with
a §(W)-algebra B has the structure of a F(V ® W)-algebra which is,
on the level of operations, given by the formula

(L®v)(a1 ®bi,a2 ® by, a3 ® b3) = p(ai, az,as) @ v(bi, ba, b3)

for p e F(V)(3), v e F(W)(3), a1,az,a3 € A, by,by,b3 € B. In the
description of Convention 1.31, this means that for v,v" € V, w,w’ € W
and o; € 6 we have

(v @w) op (v @u')) = (voyv) ® (wop w').

wV,W

e The morphism is given by the composition

FVIB)@FW)3) =F(VH)(3)* @F(W*)(3)*
= (F(VH)B) @FW™)(3)"

(V")

FVF@W*)(3)*
=F((VeW)")(3)*
~ F(V @ W)(3).

In particular, in the description of Convention 1.31, we have

(v®w) o (VW) o =o,

0 otherwise

B((w 0 ) ® (w oy w')) = {
for v,v' € V, w,w’ € W and o, o, € 6.
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Remark 1.36. Let V., W be finite dimensional representations of 35. Then,

V"W is surjective since elements of the form (v@w) o (v ®@w') for v,v' € V,

w,w’ € W, o; € € generate F(V ® W)(3) and are in the image of V"W
Thus, in particular, ¢¥""V is injective.

We can now define black and white products for quadratic operads.

Definition 1.37. The black product of quadratic operads is defined as

e e = T((M(2) © (#(2)), V(R(W) @ R(W)).

With this definition of the black product, we also have to slightly modify
its unit object.

Definition 1.38. Let k;iy be the trivial 1-dimensional representation of 3».
Let Ry < §(kiriv)(3) be the 1-dimensional subrepresentation generated by
the “Jacobi relation”

J =z, l(z2,x3)) + U(za, (x5, 21)) + U(z3, (21, 22))

for a generating binary operation [ which corresponds to 1 € kiyiy-
With these notations, we define £ = B(kiyiv, Rz ).

Remark 1.39. Let V be Ys-representation, R < F(V)(3) a subrepresen-
tation. Consider the natural isomorphism p: V ® kv = V given by the
right unitor of the monoidal structure on oo-representations. Then, since
P((vorw)®J) = (v®IL) oy (w®L) for all v,w € V and oy € 6, the iso-
morphism F(p)(3): F(V ® kiriv)(3) = §(V)(3) maps (R ® Rg) isomor-
phically to R. Thus, by Remark 1.26, we have a natural isomorphism
PB(V,R) L = P(V, R) of quadratic operads.

In fact, also the left unitor, the associator and the braiding of (¥o —
Repy,, ®, kiriv) extend in a similar way to quadratic operads to yield a sym-
metric monoidal structure on QO with e as the monoidal product and & as
the monoidal unit.

Definition 1.40. The white product of quadratic operads is defined as
mo® = P((M(2)® (#(2), 6~ (R(M) @F(#(2))(3) + F(M(2))(3) @R(W))).

Definition 1.41. Let kv be the trivial 1-dimensional representation of .
Let Rgom S §(ktriv)(3) be the 2-dimensional subrepresentation generated by
the “associativity relations”

Ay = m(x1,m(xg,x3)) — m(x2, m(xs3,x1)),

Ag = m(xg, m(x3,21)) — m(x3, m(x1,x2))

for a generating binary operation m which corresponds to 1 € k.
With these notations, we define Gom = B(ktiv, Rz). The name Gom
comes from the fact that Gom classifies commutative algebras.

18



Remark 1.42. Let V' be Ys-representation, R < F(V)(3) a subrepresen-
tation. Consider the natural isomorphism p: V ® kv = V given by the
right unitor of the monoidal structure on oo-representations. Then, since
the preimage of R ® F(ktriv)(3) + F(V)(3) ® Rgem under ¢ consists of el-
ements of the form }, ,, (v®m) oy (v ®@m) for 3}, ., vorv' € R, the
isomorphism F(p)(3): F(V @kuiv)(3) = F(V)(3) maps ¢~ H(RF (ktriv) (3) +
F(V)(3) ® Rgom ) isomorphically to R. Thus, by Remark 1.26, we have a
natural isomorphism B(V, R) o Gom = P(V, R) of quadratic operads.

In fact, also the left unitor, the associator and the braiding of (X9 —
Repy, ®, ktriv) extend in a similar way to quadratic operads to yield a sym-
metric monoidal structure on QO with o as the monoidal product and Gom
as the monoidal unit.

Now we want to show that, as for quadratic algebras, this monoidal
structure is essentially the one obtained by transferring the black product
along the quadratic dual construction (as in Remark 1.2).

Lemma 1.43. Let V and W be finite dimensional Yo-representations. Fur-
ther let a € F(V*)(3) @ F(W*)(3) and € F(V®W)(3). Consider a as an
element of (F(V)(3)®@F(W)(3))* and ¢(a) € F(V*@W*)(3) as an element
of §(V®W)(3)* via the identifications of Remark 1.30 and Remark 1.52.
Then we have a(6(8)) = ((a))(5).

Proof. Using Convention 1.31, it is enough to show the statement for a =
(for fHY®(goug’) and B = (v w) og (VV®w') where v,v' € V, w,w' € W,
fiffeV* g,g e W* and oy, 04,0, € 6.

In this case we have

a(o(B)) = ((for f1)® (g ou g))(@((v @ w) 05 (v @ w')))
= ((for f)®(g0ug))((vosv) ® (wosw))
= (for f)vosv) - (goug)(wosw)
_JT@f' () - g(w)g (w') o =05 = oy
0 otherwise
and
((a)(B) = (U((for ) ® (90w g"))) (v @ w) 05 (v @ w'))
( f®g)o (f®@g)N((v@w)os (VV@®u')) o =oy
otherwise
_ )gl(w/) Ot = Oy = Og
0 otherwise
which proves the claim. ]
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Proposition 1.44. Let Yo-representations V., W and subspaces R < F(V)(3),
S < F(W)(3) be given. Then the natural evaluation isomorphism ev: V* ®
W* = (VW)* estends to an isomorphism

BV, R) e B(W, 5)' = (P(V, R) o B(W, 5))
of quadratic operads.

Proof. By Remark 1.26, it is enough to show that under the identification
of Remark 1.32, the subrepresentation

F(ev)B)(RB(V, R) ¢B(W, 5)')) = F(ev)(3)((RT®@51)) = F(VOW)*)(3)
coincides with the subrepresentation
R((B(V, RSBV, 9))') = ¢~ (RSF(W)(3)+F(V)(3)®S) " < F(VOW)(3)*.

Now let a € F(ev)(3)(v (Rt ® S1)). Since v is surjective (cf. Re-
mark 1.36) and F(ev)(3) is an isomorphism, we can find an o/ with a =
F(ev)(3)((a')). Then, using Lemma 1.43 and injectivity of ¢ (Remark 1.36),
we obtain

a=F(ev)B)(W(a) e (ROFW)(3) +F(V)B)®8)" <
Ve (RIFW)(B) +F(V)B)®S) : v(d)(B) =0«
Ve ' (ROF(W)(3)+F(V)(B)®S): o/ (¢(B)) =0 <

V' e RQF(W)(3) + §( )=0<

which yields the desired equality. O

Corollary 1.45. There are natural isomorphisms

|

meo' = (moo)

respectively
(me@) ~mow

of functors QO x QO — QO°P respectively QO x QO — QO, i.e. o can
be obtained by transferring e along ! as in Remark 1.2.

Similar to the case of quadratic algebras, we have an adjunction relating
black product, white product and quadratic duality.

Proposition 1.46. For every quadratic operad P, the functor B e P is left
adjoint to ' o M.
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Proof. Let quadratic operads P = B(V, R), Q@ = P(W,S) and R = P(X,T)
be given. Using Remark 1.26, we want to show that the natural isomorphism

Homy, (W ® V, X) =~ Homy, (W, V* ® X) (1.2)
on the level of generators can be extended to an isomorphism

Homqo (@ « %, %) =~ Homqo (@ P o 93) .

Now let f € Homy, (W ® V, X) be given. Let f € Homy, (W, V* ® X)
be its adjoint. First we want to analyze some evaluations. Let v,v’ € V,
w,w' € W, g,g € X* and oy, 04,0, € 6. Then, under the identifications of
Remark 1.30 and Remark 1.32, we have

(((w 03 w') ® (g 01 &) F(F)(3) (v 0u )
:{«w@g) o (' ® ) F(F)(3) (v ou ) o5 = o

0 otherwise

0 otherwise

_ {<f<v>><w®g> ()W ®g) o5 = o= oy

_ {g(f(v@w)) J(fWRuw')) o5 =0 = ou
0

otherwise

Similarly, we also have

(901 9)F(H)B) (v 0w ) @ (w0, w')))
_ {(g o1 g)E(B) (v @®w) oy (Y @) o5 = oy

0 otherwise

_ {g(f(v@w)) g (fW @) o5 =0y =0
0

otherwise.

Thus we see that

(¥ ((wosw)®(gorg ) (F(F)(3) (vour')) = (9%9’)(S(f)(3)(@Z)((vouv')@(w?sw')))))-
1.3
Now note that the inclusion

FHBR) SRP oR) = ¢ (ST @FX)B) +FWH)B)QT)  (1.4)

holds if and only if for all a € ¢~ (ST ®F(X)(3) +F(W*)(3)@T)* and € R
we have a(F(f)(3)(8)) = 0. By Proposition 1.44 we can identify ¢~'(S+ ®
F(X)B)+FW*)(3)®T)* with »(S®T), so the inclusion (1.4) holds if and
only if for all € R, v e S and § € T we have (¢(y® 6))(F(F)(3)(8)) = 0.
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Now by (1.3), under suitable identifications of duals, for 5 € R, v € S and
§ € T+ we have

A,

(WY (r®0)F(F)B)(B)) = (N3 (B®7)))-

Thus the inclusion (1.4) holds if and only if for all € R, y€ S and § € T+
we have §(F(f)B)(W(B®7Y))) =0, i.e. F(f)(3)(Y(S®R)) < T. Hence the
the adjunction isomorphism of (1.2) can indeed be extended to quadratic
operads. O

With this adjunction at hand, we can put the quadratic duality of
quadratic operads into the context of GV categories as it was done in
[Manl17].

Corollary 1.47. The unit Gom of the white product of quadratic operad
is a dualizing object for the black product of quadratic operads since for all
P € QO, the functor Homqo (W e P, 6om) =~ Homqo (M, P o Gom) is
representable by P o Gom =~ P'.

Now we will show that, as in the case of quadratic algebras, QO together
with the black product is not an r-category.

Proposition 1.48. The monoidal unit £ of the black product of quadratic
operads is not a dualizing object, 1. e. there is no equivalence D: QO —
QO s. t. for all P € QO the functor Homgo (M e P, <L) is represented by
D(P).

Proof. The adjunction of Proposition 1.46 yields for all 2, Q@ € QO natural
isomorphisms

Homqo (@ ¢ 2, %) =~ Homqo <®,93! o S£> :

Thus, if £ were a dualizing object, D(%) would be isomorphic to ' 0o £ by
the uniqueness of representing objects.
Note that we have

PB(kiriv, §(kuriv) (3))' 0 L
~PB(kiiy @ ktriv: ¢ (0@ F(kuriv) (3) + (ki ) (3) @ R(2)))
:m(k’:‘riv ® ktriv; ¢71 (S(k:}lv) (3) ® %(8)))

Now the elements which are in the image of ¢ are of the form . ¢ co, -
(forl) ® (f o¢ l) where f is a generator of kf;, and c,, € k, whereas

triv
non-trivial elements of F(kf;,)(3) ® R(ZL) always have summands with dif-
ferent composition schemes in their two tensor factors. Thus we obtain

o H(F(kEL)(3) @ R(ZL)) = 0 and hence

PB(keriv, §(Etriv) (3)) 0 L = P(kiy @ Ktriv, 0) = F(Kriv)-
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Now using Remark 1.34, Corollary 1.45 and Remark 1.42 we obtain

!

Gom' e M = Bom' e (M) =~ (Gom ow') =~ (w)’

lle

and similarly W e Bom' ~ m. Thus, by the uniqueness of monoidal units, we
have Gom' >~ £. Hence we obtain

Gom' o2
xFoZ
;m(ktriv ® ktriva ¢—1(9{(g) ® g(ktriv)(B) + g(ktriv)(g) ® 9{(2)))

As above, elements in the image of ¢ are of the form Y ¢ co, - (1041) ®
(ot 1), but elements of R(L) ® F(kiriv)(3) + F(Kktriv) (3) ®R(ZL) always have
summands with different composition schemes in their two tensor factors.

Thus we obtain ¢~ (R(ZL) @ F (kuiv) (3) + F(kuiv) (3) ®R(Z)) = 0 and hence
Gom' o P ~ B(Eiriv @ Eiriv, 0) = F(ktriv)-

This means that the assignment P — %' 0 £ maps the non-isomorphic
objects P (ktriv, § (ktriv) (3)) and Bom onto isomorphic objects. Thus there
cannot be an equivalence of categories that is given by this assignment on
the objects. O

In this situation, one may hope to mimic the construction of Proposi-
tion 1.23 to obtain a natural transformation ¢ = o which is compatible with
the associators, but this approach does not work for quadratic operads.

Proposition 1.49. The natural transformation idg from the tensor prod-
uct functor for Xo-representations to itself cannot be extended to a natural
transformation e = o.

Proof. If that were the case, then we would in particular have a morphism
of quadratic operads

F:Gom =~Gome¥L - Gomo¥f =&

which restricts to idg,,,, : ktriv — kiriv on generators. This map on the
generators extends to a morphism of operads Gom — &£ if and only if
R(Bom) < R(ZL), which cannot be the case since dim(R(Gom)) = 2
whereas dim(R(Z£)) = 1. O
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2 The Gravity Operad

The gravity operad, which was first introduced in [Get94] and in [GK94],
has several equivalent definitions. In this section we are going to construct
an incarnation of it using the homology of the moduli spaces 9, of smooth
n-marked genus 0 curves (cf. Definition B.1). This approach, which goes
back to [GK94] and [Get95], also paves the path to establishing the Koszul
duality between the gravity operad and the hypercommutative operad (cf.
Theorem 2.7).

2.1 The Gravity Cooperad

Since the residue maps which induce the (co)operadic (co)compositions
of the gravity (co)operad are better described in terms of cohomology, we
will first construct the gravity cooperad using the cohomology of 91, and
dualize this definition to obtain the gravity operad.

Definition 2.1. Let 606rav be the Y-module in the category of graded
C-vector spaces with

GoGrav(n) = det(C") @ H* 1 (M,11)

where the ¥,-action on det(C™) is induced by permuting the coordinates of
C" and the ¥,-action on H*~'(9,,1) is induced by the action on 9,1
given by permuting the first n marked points.

Definition 2.2. Let k,1 € Ny, i € {1,...,k}. We define the infinitesimal
cocomposition morphism A;: Bo€rav (k+1—1) — BoGrav (k) ® BoGrav (1)
of the gravity cooperad as follows:

Let e denote the unique internal edge of Cy,1 0; Cjy1. Let the bijection
fir{l, ... k+1—1}0{e} = {1,...,k}U{1,...,l} be given by

ie{l,....k} r=e
fi(@) je{l,... .k} x=je{l,...;k+1—-1},j <1
I\ T) = .
j—i+1le{l,....1} x=je{l,...;k+1l—-1},i<j<i+l
j—l+1e{l,....k} xz=je{l,...;k+1l—-1},i+1<j
Let

¢z det(CFH1) @ det(CH) = det(CF) @ det(C!)

be the isomorphism induced by f;.
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Now the infinitesimal cocomposition morphism A; is defined as the com-
position

GoGrav(k +1—1) = det(CHH"H @ H* (M)

d@Rescy, 4 10,0141.Cppy

det(CF1) @ det(C1) @ H*72(9M(Cley1 05 Cri1))

id@W*

_ CkoCiad, det (C*H71) @ det(C) @ H*~2(My 1 x My4q)
¢:®id det(C*) ®@ det(C) @ H* ™ (Myr1 x My41)
id®r, det(C") @ det(C) @ H* (M 11) @ H* (M)
d®r®id, det(C*) @ H* ™ (My41) ® det(C') @ H* ™ (My41)
_ BoGrav (k) ® GoGrav(l),
(2.1)

where Ve, .| 0yt Mprr X M1 = M(Crp1 05 Cryq) is the isomorphism of
Fact B.9 and Fact B.10.

Proposition 2.3. The cocomposition maps of Definition 2.2 endow GoGrav
with the structure of a cooperad.

Proof. Let k,l,i as in Definition 2.2.
Equivariance. We need to show that for o € 3, the diagram

GoGrav(k +1—1) _Ai, GoGrav (k) ® GoGrav(l)

GoGrav(k+1—1) ~ BGoGrav (k) ® BoGrav(l)
o(z)

commutes, where 0y, ;: ), — X471 is the inclusion defined in Notation A.12.
In order to show this, we will analyze the definition of A; resp. Ay;) step
by step and show the compatibility of each map in (2.1) with the action of

g.

First, we note that Ci11 0,0 Ciy1 = Oki(0)(Cry1 0 Ciy1). Hence, by
Proposition B.21 and with the notation thereof, we have a commutative
diagram

Resoy 410101 41.Crq

H._l(mk+l) det(C{e}) ®H._2(m(0k+1 Oy Cl+1))
(9k,z‘(0)*)71l l(id®9k,z‘<0)*)7l
H* ™ My yy) det(C'") @ H*72(M(Cht1 00 (i) Crs1))

Resoy 4 100(3)Cra1:Crpl

Tensoring the vertical maps with

Or,i(0): det(@’”l*l) N det((DIﬁLl—l)7
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we see that id®@Resc, 0,011,101, and id®Resc,,, ;o
ible with the action of o.

Next, the compatibility of We, ., ¢),,,i resp- Yo, .1 ,01,1.0(:) With the strata
of M1 x M1 (cf. Fact B.9) and the Yp-action (cf. Fact B.10) yields a
commutative diagram

o(i)Ci11,Cry AT€ COMpat-

Yoy 1,010
fIn(cvk-i-l O3 Cl+1) I — 9:nk+1 X i):nl-‘rl

Gk,i(d)J( laxid

M(Crt1 %6 (i) Cr1) e Mir1 x My
v ;
Cl4+1:Cl41,0(8)

Now taking cohomology and then tensoring the vertical maps with
0r,i(0) ® by, (0): det(CH) @det(CH) — det(CHH 1) @ det(C174(7)()

yiel'ds the compatibility of id ® \I’ZYHDCHM and id ® \I’z'kH,CzH,U(i) with the
action of o.

Moreover, we have a commutative diagram

(.. k+1-130{e} L (1, k}ofL,....1

9,m-(a)oidl looid

of sets coming from identifications of edges. Applying det(C.) to this square
and tensoring the vertical maps with

((o x id)*)fli HFQ(mkH x Mip1) — H.72(fmk+1 X My11)

yields the compatibility of ¢; ®id and ¢,(;) ® id with o.

Finally, the compatibility of id®« resp. id®7®id with the corresponding
actions of o on their domains and targets follow directly from the naturality
properties of the Kiinneth isomorphism resp. the braiding. Thus, combining
the previous compatibility relations, we see that (2.2) indeed commutes.

The other equivariance relation is given by the commutativity of

GoGrav(k+1—1) _Bi, GoGrav (k) ® BoGrav(l)

V1,4 (P)l iid®0

GoGrav(k+1—1) = BGoGrav (k) ® BoGrav(l)
for all p € 3, where ¥;;: ¥; < ¥j4;—1 is the inclusion defined in Nota-
tion A.12. Using the fact that Cjy1 0; Cii1 = 91i(p)(Crs1 i Cii1), this can
be shown with a similar analysis as for the compatibility relation for o € ¥y.
Cocomposition axioms. Let m e Ny and j € {i +1,...,k}. The parallel
cocomposition axiom requires that the diagram
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GoGrav(k +1+m —2) S SN GoGrav(k +m — 1) ® BoGrav(l)
lAj®id
Ajim-1 BoGrav (k) ® BoGrav(m) ® GoGrav (1)

J{id@r
GoGrav(k + 1 — 1) ® GoGrav(m) el GoGrav (k) ® BoGrav (1) ® BoGrav(m)
(2.3)

commutes.

First we note that (Cg410j Crg1) 0i Cr41 and (Cri1 0 Cr41) 05 41—1 Cms1
represent the same isomorphism class T € Jpii1m—1. Let e € In(T) be
the edge which is used in grafting Cj1 with Cj4q1 in the grafting scheme
(Cr419i Ci41) 0411 Cry1 and f € In(T') the edge which is used in grafting
Cl+1 with Cp,11 in the grafting scheme (Cyi1 0j Cpog1) 05 Cry.

Next, Proposition B.23 implies that the compositions

H ' (Myit4m—1)

1d@Rescy, L 1,0 Cry1 Chpitm—1

det(C!) @ H*~(M(Chym s Ciy1))

1d@ReS (04 105 Crn41)05C141:Chtm©i Cryt

det(C') @ det (CY) @ H* 3 (M((Cry1 0j Crs1) 05 Cign))

d®PT,Cp 4 mo0iCri1 Chprym—181d

det €™ @ H* =3 (9(T))

and

H ' (Myir4m—1)

id@Rescy,jos 11 1Cm4+1:Chgiem—1

det(CY) @ H* 2 (M(Crs1 0j41-1 Cims1))

1d@Res (04 10;C1 41097 41-1Cm+1:Ch41°j+1—1Cm+1

det(CY)) @ det(C') @ H*™*(M((Cry1 0i Ciy1) 05411 Cony1))

WA®¢T,Cp, 105411 Cmt1:Chgipm—1 14

det €™M @ H*~3(M(T)).

both coincide with Resr ¢, ,,.,,_,- We are now going to relate the two com-
positions in (2.3) by expressing them in terms of Resrc, ... .-
We start with the top-right composition. By Proposition B.22, the dia-

gram
KoW ¥ X
< m>C "t o — o —
H*2(M(Chim 0i Ciy1)) e H* Y (M(Cram)) @ H*™HM(Cl11))
ResT,C’k_‘_moiCH_ll lReSCk+1°ij+1»Ck+m ®id
det(C'N) @ H**(M(T)) ———— det(C!) @ H* > (M(Cr11 05 Crmy1)) @ H*H(M(Cr41))

roW .
Crk+1°Cm+1:Cr41+1

commutes. Thus, after applying appropriate isomorphisms, we can replace
the map Resc,, 0;Cn 1,Chyrm ®id appearing in Aj ® id on the right side of
(2.3) with ReST70k+mOiCl+l'
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By Fact B.9 and with the notation thereof, we also have a commutative
diagram

koW ¥
Cr419iCmi1-C e o
H*3(ON(T)) —2 2 V=2 (9N (Chyr 05 Cong1)) © H* (M)

E3 .
ow . d
l(ﬁ ck+lvcm+1ﬂ)®l

H (OMyei1) @ H* ™ (Myns1) @ HYH(My41)

lid@‘r

H 3 My X Mip1 X Mong1) — H O1) @ H 7 H(My1) @ H 7 (Dng1)

(YOp 1 10iC141.Crpy1.d+1-10
xid)) ¥
Wepiq.04q.0%1d)

since

U 10Crp1,Cma1 it 1—10(Y0 1,011, %0d) = Woy 10:0m41.0151.00(W 0y 41,05 X1d)o(id X T).
Now let the bijection
g: {1, k+14+m—230In(T, Cryirm_1) — {1,...,k}O{1,..., 1}0{1,...,m}

be given by

1e{l,...,k} x=e

je{l,...,k} x=f

te{l,... k} z=te{l,...;k+l+m-—-2}t<i
glay=<t—i+1e{l,....1} z=te{l,....k+l+m—-2},i<t<i+l

t—1l+1e{l,...,k} x=te{l,....k+l+m—-2}i+l<t<j+l-1

t—j—14+2e{l,....m} z=te{l,....k+l4+m—-2}j+l-1<t<j+l4+m-—1

t—l—-m+2€e{l,...;k} xz=te{l,...;.k+l+m-2},j+l+m—-1<t

(ng . det(C{l ,,,,, k+l+mf2})®det(CIn(T,Ck+l+7”,1)) i det(@{l ..... k})®det(c{l ..... l})®det(c{l ..... m})

be the induced isomorphism.
Combining the alternative description of Resr ¢, ., ,, the previous two
diagrams and ¢,4, we see that the top-right composition of (2.3) is given by

det(C =2y & H (Mg 14 m1)

d@ResT,C 41

det(C{l ..... k+l+m—2}) ®det(cln(T,Ck+l+m_l)) ®H°_3(9JT(T)

i * m— n : o—
1d®WT det(C{l »»»»» k+1+ 2}) ®det(CI (Tvck+l+7n71)) QH 3(9nk+1 X M1 X Myt

)
)
id®~x det(C{l ,,,,, k+l+’I1L72}) ®det(CIn(T,Ck+l+m,1)) @H.il(mkq_l) ®H’71(ml+1) ®H0—1(mm+1)
)
)

g ®id det(C{l ,,,,, k}) ®det(C{1 ,,,,, z}) ®det(C{1 ,,,,, m}) ®H071(9ﬁk+1) ®H"1(iml+1) ®H'71(imm+1

i) det(C{l AAAAA k}) ®Ha—1(mk+1) ®det(C{1 AAAAA l}) ®H._l(ml+1) ®det(c{1 ,,,,, m}) ®H._1(mm+1

where U = (W¢, | 0,1, Xid) oW, 10,014 1,Cman,j+1—1 and o is the appropri-
ate permutation of the tensor factors. A similar analysis of the left-bottom
composition of (2.3) shows that it is also given by (2.4), thus showing that
(2.3) indeed commutes.

Now let 7/ € {1,...,1}. The sequential cocomposition axiom requires
that the diagram
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GoGrav(k +1+m —2) S N GoGrav (k) ® GoGrav(l +m — 1)

AHJ,,,IJ Jid@Aj/

GoGrav(k +1— 1) ® BoGrav(m) Ao BGoGrav (k) ® BoGrav (1) ® GoGrav (m)

commutes. As for (2.3), the two compositions in this diagram can be de-

scribed in terms of a residue map associated to contracting two edges. We
omit the details of this analysis as it is completely analogous. O

We can now define the gravity operad.

Definition 2.4. The gravity operad Grav is the operad in the category of
graded C-vector spaces given by the linear dual of GoGrauv., i.e. its under-
lying Y-module is given by

Grav(n) = (BoGrav(n))* = (det(C") @ H* (M, 11))* = det(C") @ He_1 (M 41)
and its infinitesimal composition morphisms o;gm” by

Crav (k) @ Grav(l) = (Bobrav (k) ® GoGrav(1))*

%
2, BoGran (k +1— 1)* = Grav(k +1—1).

2.2 Koszul Duality

In this subsection, we are going the discuss the Koszul duality between
the gravity operad and the hypercommutative operad which was proven in
[GK94] and in [Get95].

We start by defining the hypercommutative operad which plays an im-
portant role in mathematical physics because it describes the algebraic struc-
ture of quantum cohomology of varieties (cf. [KM94]).

Definition 2.5. The hypercommutative operad #HyBGom is given by the ho-
mology of the operad (M, 4+1)new, of Fact B.10, i. e. its underlying ¥-module
is given by

HyGom (n) = He(My11)

and its infinitesimal composition morphisms by

m T a K N o=y He(o; —
SHUEM . H, (My1) ® Ha(Mys1) > Ho(Wpy x Myg1) = H, (0yy).

(2
Next, we want to analyze the cobar construction QGrav of Grav.

Remark 2.6. For n € IN consider the double complex (K%r%uu,n)p,qell\f under-
lying (2€rav)(n). Then, for k € IN we have

Kehh =det(@)®@| @ det(@ D)@ @ Gran(|Adj(v)] - 1)*
’ TeT 1 veNLV(T)
| In(T) =k

(2.5)
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where the internal grading e on the left hand side comes from the grading
of @yenry(ry Grev (| Adj(v)] —1)*.

Here the Y,-action on the first tensor factor is given by permuting the
coordinates of C". The action on the second factor is given by acting on
trees, i.e. ¢ € X, maps the summand indexed by T to the summand in-
dexed by o(T) as follows: Since T and o(T) have the same underlying
unlabeled tree, we can identify In(7") with In(c(7")) to obtain an isomor-
phism det(C™(™)) =~ det(C™@(T)). Similarly, NLV(T) can be identified
with NLV(o(7')), which yields an isomorphism

® Grov (| Adj(v)| — 1|)* =~ ® Graov (| Adj(v)| — 1)*
veNLV(T) v'eNLV ((T))

by mapping the factor indexed by a vertex in NLV(T") to the factor indexed

by the corresponding vertex in NLV(a(T)).
By identifying 6rav™ with Go6rar and using the definition of GoGrav,

we can identify Kg:;i}'n with

det(@)®| @ det(@ M) X (det(clAdﬂv)l*l)@H'*l(smmdj(v)‘))

T€Tn+1 veNLV(T)
| In(T)|=k
(2.6)
Note that for every tree T € J,+1, identifying the labels {1,...,n + 1}
with the corresponding external edges {eq,...,en+1} yields a bijection

{1,...,n}0In(T) = Edge(T)\{ens1 ).

Now identifying {1,...,|Adj(v)| — 1} with the first | Adj(v)| — 1 edges of
the corolla C)agj(y) in the corresponding grafting while decomposing the
underlying tree of 1" into corollas yields another bijection

Edge(T)\fens1} = | {L.....|Adj(v) - 1}.
NLV(T)

Moreover, these bijections are compatible with the action of ¥,,. Thus, the

determinants in (2.6) can be trivialized to identify the X,-representation
k+1,e .

K, 7 with

Grov,n

® & HTOagw)- (2.7)

TeT+1 veNLV(T)
| In(T)|=k

Now note that for every tree T, we have | NLV(T')| = | In(7T")| + 1. Thus,
using the Kiinneth isomorphism and the product decomposition of Fact B.9,
we can further identify this with

@  HRORT)). (2.8)

T€Tn+1
| In(T)|=k
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Next, we are going to identify the (external) differential d**1: Ké;;"n -

K!;;i'n Let T,T7’" € J,4+1 such that |In(T)| = k, |In(7")] = k + 1 and

T ~T'/e. By
Apr s det(C™T)) — det (€™

we denote the map given by wedging with the basis element of C™(™") which

corresponds to e € In(T").

Now let v1,v9 € NLV(T”) be the vertices adjacent to e € In(T") and v €
NLV(T) be the vertex they collapse into. Then we can identify NLV(T")\{vo}
with NLV(T")\{v1,v2}. Thus, denoting both of these sets by V', we obtain
identifications

& Grov(|Adj(v)| - 1)*
veNLV(T)
=Grav (| Adj(vo)| — 1)* ® ) Grav (| Adj(v)| - 1])*
veV
and
®  Grav(| Adj(v)| - 1])*
veNLV(T)
=Grav (| Adj(v1)] — 1)* @ Grav (| Adj(v2)| — 1)* @ X) Grav (| Adj(v)| — 1])*.
veV

Moreover, by building T"and T’ by grafting corollas, the edge contraction
T" >1 T can be identified with an edge contraction Cjagj(v,)| ©i C| Adj(vs)| =1
C| Adj(vy)| @t some stage. Thus, we obtain a map

s @ Gres(Ad0) - 1) — @ Gren( AdjW)] — 1))*
veNLV(T) o/eNLV(T")

which under the above identifications corresponds to (0"**)* ® id.

Now, under these notations and identifications, the differential d*+! is
given by adding up the maps idger(cn) ® A7 @ v 7 for all 1-step edge
contractions 7" >1 T with In(T) = k.

When we identify €rav* with Bo6rav as in (2.6), (of**)* gets identi-
fied with A;. Trivializing the determinants in (2.7) gets rid of the factors
idget(cny) ® A7 r in each summand of the differential. Finally, identifying
R peNtv (1) H* ™1 (DM agj(vy) With He—1=1I(Ml(9n(T')) and utilizing the com-
patibility of residue morphisms with product decompositions as in Propo-
sition B.22, we see that in the description of (2.8) the summand of the
differential corresponding to an edge contraction 77 >; T with T' =~ T" /e is
given by

Res(e): Ho—l—\InT|(9ﬁ(T)) - H._l_‘InT/l(gﬁ(T/)).

Let us now also identify the composition morphisms of 26t which are
inherited from the composition morphisms of the free operad §(6rav*[—1]).
Let T € Jy41, T € Tpt1, i € {1,...,1}. Note that we can identify NLV(T o,
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T") with NLV(T)U NLV(7”). Now, after trivializing the determinants occur-

ring in QGrau as in (2.7), the composition morphism of***“* on the summand

( & H'_l(%Adj(vn))@( & H'_lmmdj(vf)))

veNLV/(T) v/eNLV(T")

of KQZS}TI)‘H" ® ngg&‘“" is given by mapping the factor indexed by

v e NLV(T)U NLV(T”) to the factor indexed by the corresponding vertex in
NLV(T o; T’) in the summand

& H O adjw)))
veENLV (To; T")

|In(T)[+1+|In(T") |+ 1,0 | In(To:T')|+1,0 e . .
of Kegpon i4m-1 = Ko 14m-1 - After utilizing Kiinneth isomor-

phisms and product decomposition of MM (T'), M(T”) resp. M(T o; T"), we see
that in the description of (2.8), the composition morphism of*%<*

5 is given
by adding up the isomorphisms

Hoflf| In(T)| (m(T)) ® Hoflf\ In(T")| (gﬁ(T/»
LA H0727| In(T)|—|In(T")| (m(T) « gﬁ(T/))
—1 *
(\IIT,T’,i) Ho—1—| In(To;T7)| (W(T 0; T/)).
Now that we have an explicit description of Q2Grav, we can show that it
is quasi-isomorphic to #y®Bom by using the residue spectral sequence.

Theorem 2.7. There is an quasi-isomorphism QGrav ~ HyGom of differ-
ential graded operads.

Proof. Let (EP?), e be the first page of the residue spectral sequence for
My+1 (cf. Fact B.24) which we consider as a double complex with zero
vertical differentials. Our previous analysis yields isomorphisms K%;lfn ~

EP49=1 for pe IN, g € N, which are compatible with the differentials. Con-
sidering that Ko¥ =~ K2°

Grav Gavn =0, this yields an isomorphism

£t ((Kggp n)p.aen)® = t06((EP)p gen)®

Grav ,n

of total complexes. Thus, using the exact sequences of Fact B.25 we obtain
a quasi-isomorphism

(QGra)(n) = 0t (KL, ) pqen) > 2 tob((EP9), qen) "> ~ H">7* (@, 1).

Grav ,n

Now using Poincaré duality and considering all n € IN,, we get a quasi-
isomorphism QGrev ~ HyBom of ¥-modules. Since the composition mor-
phisms of Q&rav and HyBom are both given by combining Kiinneth iso-
morphisms with W7 g; for suitable 7', S and i, this quasi-isomorphism is
compatible with the operad structures on both sides and hence yields a
quasi-isomorphism of differential graded operads. ]
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This result can be seen as an extension of the classical Koszul dual-
ity between commutative algebras and Lie algebras since the suboperad of
HyBom generated by #HyBom (2) is isomorphic to the commutative operad
and the suboperad of Grav generated by Grauv(2) is isomorphic to the Lie
operad (cf. [Get95]).

34



A Labeled Trees

In this appendix we fix some notations regarding labeled trees which play
a crucial role while describing operadic compositions and stratifications of
moduli spaces of genus 0 curves. A detailed account of trees and their
relation to operads can be found in [BMO08, Section 1] and [LV12, Appendix
Cl.

Definition A.1. A tree is a connected undirected graph with no cycles.
Now let T be a tree.

Notation A.2. o By Vert(T') we denote the set of vertices of T.
o For v € Vert(T'), we denote by Adj(v) the set of edges which are
adjacent to v.
o Let NLV(T') denote the set of those vertices of T' which are not leaves,
i.e. NLV(T') = {v e V | Adj(v) > 1}.
o By Edge(T) we denote the set of edges of T'.

Definition A.3. o An edge e € Edge(T) is called internal if all vertices
which are adjacent to e are also adjacent to another edge. Let In(T")
denote the set of internal edges of T

o An edge e € Edge(T) is called ezternal if it is not internal, i.e. if one
of the vertices adjacent to e is not adjacent to any other edge. Let
Ex(T') denote the set of internal edges of T.

Definition A.4. For e € Edge(T) let T'/e denote the tree obtained from 7T’
by removing the edge e and identifying the two vertices adjacent to e. We
say that T'/e is obtained from T by contracting the edge e.

Definition A.5. Let n € IN.. An n-tree is a tree whose external edges are
labeled with 1,...,n, i.e. a tree S together with an identification Ex(S) =
{1,...,n}. Let 9, denote the set of isomorphism classes of n-trees w.r.t.
graph isomorphisms which respect the labels of the external edges.

Remark A.6. The symmetric group ¥, acts on the class of n-trees by
permuting the labels. Moreover, this action is compatible with graph iso-
morphisms which preserve labels, so it descends to an action of >, on F,.

We will sometimes identify an n-tree with its isomorphism class or its
underlying tree, but the object we are talking about will be clear from the
context.

From now on we fix an ne€ Ny and 7, S € 9,,.

Remark A.7. For an internal edge e € In(7'), the external edges of T'/e can
be identified with those of T" and thus inherit the labels of Ex(7"). When we
consider T'/e as an n-tree, we do it so using these inherited labels.
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Notation A.8. o We write S >; T if T is isomorphic to S/e as an
n-tree for some e € In(.5).

o We write S > T if there is a sequence 11, . .., Ty of n-trees with k € IN;.
and such that T4 = S, Ty, = T and T; >1 Tij41 fori € {1,..., k—1}, i.e.
if T' is obtained from S via a sequence of internal edge contractions.

e For S > T we denote by In(S,T) < In(S) the set of those internal
edges which are contracted to obtain 7.

When we think of the (n + 1)-st external edge of an (n + 1)-tree as an
“output” and the remaining external edges as “inputs”, we can regard an
(n + 1)-tree as a “composition scheme with n inputs”. We now want to
describe how these composition schemes can be “grafted”. For this we let
nomeNy, TeTi1, S€ T and i € {1,...,n}.

Definition A.9. We define an (n + m)-tree T o; S as follows:

Let e; be the i-th external edge of T' which connects the vertices vy, wr €
Vert(T'), where wr is only adjacent to e;. Let f,,,+1 be the (m+1)-st external
edge of S which connects the vertices vg, wg € Vert(S), where wg is only
adjacent to fi,+1. The underlying tree R of T'0; .S is the tree obtained from
the disjoint union of T" and S by removing the edges e; and f,,+1 along with
the vertices wp and wp, and replacing it with an (internal) edge connecting
vr and vg.

Thus, if we fix enumerations Ex(T) = {ei,...,en+1} and Ex(S) =
{f1,---, fm+1} given by the labels, we obtain

Ex(R) = (Ex(T)U Ex(S))\{€, frm+1}-
Now we enumerate these external edges as

61,...,ei_l,fl,...,fm,€i+1,...,€n+1

which yields an identification of Ex(R) with {1,...,n 4+ m}. We now define
T o; S to be R equipped with this identification.

In fact, one can build every tree from simple pieces via grafting:

Definition A.10. We define the n-corolla C,, to be the unique n-tree (iso-
morphism class) with no internal edges.

Remark A.11. Every labeled tree can be realized via a sequence of graft-
ings of corolla up to a permutation of its labels, i.e. for each tree R € 9,
there are sequences (no,...,ng), (i1,...,i;) and a permutation o € %,, such
that R is isomorphic to o(Ch, 0i;, Cp, 94y - - - 04, Cp, ) as a labeled tree.

Moreover, grafting is compatible with certain permutations of labels.
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Notation A.12. o Let 0,;: ¥, — X,,1m—1 be given by letting o € ¥,
act on {1,...,n + m — 1} by considering the block {i,...,i +m — 1}
as one element and permuting the resulting (i — 1) + 1+ (n — i) =n
elements.

o Let ¥yt X = Xpg4m—1 be defined by letting p € ¥,,, act on the block
{i,...;i+m—-1}<{l,....,n+m—1}.

Remark A.13. We endow J,, 11 X Tpp4-1 with a Xp,-action by permuting the

first n labels in the first coordinate and a X,,-action by permuting the first

m labels in the second coordinate. We endow 9., with a X,- resp. ¥,

action by acting on the first n 4+ m — 1 coordinates via 6, ; resp. ¥, ;.
With respect to these actions, the map

it Int1 X Imy1 = Tnam

is X,- and X,,-equivariant.
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B Moduli Spaces of Marked Genus 0 Curves

In this appendix we review some facts related to moduli spaces of genus
0 curves which are used throughout Section 2 while dealing with the gravity
operad. Many of these results were originally proven in the context of alge-
braic geometry, but with the exception the terminology “curve” (instead of
“Riemannian surface”), we use the language of complex geometry which is
a better fit for our considerations of residue morphisms.

B.1 Moduli Spaces

We start by defining the geometric objects we are concerned with. For
this, we fix a natural number n > 3.

Definition B.1. The moduli space of smooth genus 0 curves with n marked
points is

o, = {(Proepn) € (CPY)" [ pi# pj fori 23} o ©
2 9

where PGL2(C) acts diagonally.

Remark B.2. Since the action of PGLy(C) on CP! is strictly 3-transitive,
moving the last three points to 0, 1 and o yields an isomorphism

My, = {(21,...,2n-3) € (C\{0,1})" | z; # 2z for i # j}.
In particular, 9, is an (n — 3)-dimensional affine variety.
The following convention helps us deal with some degenerate cases.
Convention B.3. We set My := .

Remark B.4. ¥, acts on 91, by permuting the marked points. Moreover,
there is a unique action of 3 on My = J (which is necessarily trivial).

Next, we want to describe a compactification of 9, which goes back to
[Knu83a] and [Knu83b]. Another approach to this compactification via a
sequence of blow-ups can be found in [Kee92]. In the following we will need
some concepts related to trees which are dealt with in Appendix A.

Fact B.5 ([Knu83a, Theorem 2.7], [Knu83b, Theorem 6.1]). 9, admits a
compactification IM,, which classifies n-marked stable curves of genus 0. M,
has the following properties:

e M, is a smooth projective variety.

o M, admits a stratification

M, — | m(r) (B.1)

TeT,

given by dual graphs of stable curves such that MM(T'") < IM(T) if and
only if T" > T.
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o My, can be identified with the stratum OM(Cy,).
e For T €9, M(T) has codimension | In(T)| in IN,,.

Notation B.6. For an n-tree T let M(T) denote the closure M(T) of the
stratum OM(T) < 9M,, in M,

Convention B.7. We set My == F.

Remark B.8. The ¥,-action on 9, extends to 9, in a way that is com-
patible with the stratification of Fact B.5, i. e. maps strata into strata. The
induced action on the set of strata coincides with the one induced by the
Yp-action on 9, given by permuting the labels of external edges (cf. Re-
mark A.6).

Similarly, the (trivial) ¥s-action on 9%y induces a (trivial) ¥g-action

My = .
One can in fact describe the strata in (B.1) more explicitly.

Fact B.9 ([Knu83a, Theorem 3.7]). Let T € Jy41, S € Tpy1, T = T and
S'=8S.
Then grafting of stable curves induces an isomorphism

~

\IIT7S,2'3 ﬁ(T) X ﬁ(5> — ﬁ(T O3 S)

which is compatible with the stratification in (B.1) in the sense that it re-
stricts to an isomorphism between IM(T") x M(S") and M(T" 0;S"). By abuse
of notation, we will denote the restriction of Ur s, to M(T) x M(S) also by
Ur s _ _

Moreover, the restriction of Wrg; to M(T') x M(S") coincides with
W g

In particular, for every tree T € I,, decomposing a suitable relabeling
of T into corollas by representing each internal edge as a grafting (cf. Re-
mark A.11) yields isomorphisms

MT) = [ M adie)-
veNLV(T)

and

E
S
14

[T 9 adie)-
veNLV(T)

Different orderings of In(T") yield product decompositions which differ from
each other by a permutation of their factors.

In fact, these product decompositions enjoy certain compatibility prop-
erties with the action of the symmetric group which can be compactly for-
mulated as an operad structure.
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Fact B.10 ([GK94, 1.4]). The isomorphisms (V7 s;)7.s, of Fact B.9 can be
chosen in a way that the X-module (ﬁnﬂ)nen\u in the category of varieties
over C, where Xy, acts on M, 11 by permuting the first n coordinates, can be
endowed with the structure of an operad via the infinitesimal compositions

maps

ey o Vo101 == o
0t Mp1 X My ————— M(Cry1 0 Cry1) S Migi1
fork lelN,, 1 <i<k.

One can also describe the local picture of the stratification which will
turn out to be given by the following standard stratification.

Construction B.11. Let k,l € IN with | < k and let D = {(z1,...,2x) €
CF | 21 -... 2z = 0}. This datum induces the standard stratification of C*
with boundary D given by

) xm

Ic{1,...l}

where
X(I):= {(zl,...,zk)ECk |z =0foriel,z #Oforje{l,...,l}\l}

with

(I)={(zl,...,zk)e(Dk]ziz()foriel}

and X(I') < X(I) if and only if I’ 2 I.

Fact B.12 ([Knu83a, Theorem 2.7]). Let T € I, xz € M(T). Let S € T, be
the unique n-tree such that x € M(S). Then S > T, so T is obtained from
S by contracting some edges ey, ...,e;. For I < {1,...,1} let Ty the n-tree
obtained from S by contracting the edges e; with i€ {1,...,[}\I.

Then there is a chart of M(T) centered at x such that on that chart, the
stratification of M(T) induced by (B.1) coincides with the standard stratifi-
cation of Construction B.11 in the sense that MM (1) corresponds to X (I).

In particular, 0IM(T) = IM(T)\IM(T) is a normal crossing divisor in
M(T) with irreducible components {IM(T') | T' >1 T}.

B.2 Logarithmic Forms and Residue Morphisms

Next, we fix an n-tree T € J,, and want to describe differential forms
on IM(T) with logarithmic poles along 09M(T) resp. corresponding residue
maps which play a crucial role in the construction of the gravity operad.
A more detailed treatment of these concepts for general normal crossing
divisors with smooth components can be found in [PS08, Chapter 4].
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Definition B.13. We define a complex of sheaves on M(T'), the logarithmic
de Rham complex
Q.ﬁ(T) (log 0M(T))
of (M(T), 0(OM(T)) by describing its sections on charts as in Fact B.12 where
the stratification is given by the standard stratification of Construction B.11.
Note that in such charts, the boundary ¢90t(T) corresponds to {(21,...,2) €
CFlag - 2z = 0}. Now the sections of 2% . (log 0M(T")) on such a chart

are generated by forms of the form

(T)

dzil A dzim

A B.2
P, n (B.2)

im
where {i1,...,i,} S {1,...1} and 7 is a holomorphic form on 90(T).

Remark B.14. The restriction of a differential form on 9t(7) which is
locally of the form (B.2) to 9(7") is holomorphic.

Thus, letting j: 9M(T) — 9M(T) be the inclusion, we obtain a restriction
morphism
Fact B.15 ([PSO08, Proposition 4.3]). The restriction morphism of Remark B.1}
is a quasi-isomorphism and thus induces an isomorphism

kan . °
H™ (9(T); Q5

1y log B(T)) = BT Qo)) = HHON(T))

for all k € IN.

Now we fix S € F,,, S > T and want to define the residue of a logarithmic
form on (9M(T), d(M(T)) along S. For this, we first choose an enumeration
a = (e1,...,en) of In(S,T).

Construction B.16. Let z € M(S). Let T; denote the n-tree obtained
from S by contracting all the edges e; with j € {1,...,m}\{i}. We say
that a chart centered at x is compatible with o if the stratification of 9 (T)
corresponds to the standard stratification of Construction B.11 on that chart
and under this correspondence, 9(T;), i € {1,...m}, corresponds to the
hyperplane {(z1,...,2) € C* | z; = 0}. Note that compatible charts always
exist by Fact B.12 and under a compatible chart, 9(S) corresponds to
H:={(z21,...,21) € CF| zz=0forie{l,...,m}}.

Using the local description of Definition B.13, we can write the restriction
w of a homogeneous form in Q%(T)(log OM(T)) to a compatible chart as

d d
wzﬁ/\---/\ﬁ/\nw—i—n; (B.3)
Z1 Zm

42



dzm
) Zm

where 7, is not divisible by any of dz—zll, and 7/, is not divisible by

dZ% A A dzZTm‘ Now we set Res§ r(w) = nw|u-

This assignment is compatible with chart transitions as long as the charts
are compatible with . Further note that Resg p(w) is a logarithmic form
on (M(S),dM(S)). Thus, letting jg7: M(S) — M(T) be the inclusion, we
obtain a morphism

log OMU(T)) — (js.1)« S o (log EM(S))

a QP
Resg r: Q5 T(S)

(T)(
which we call residue morphism with respect to a.

Remark B.17. The Leibniz rule yields

Resgrodor  gogamry) = (FU™ - diig py0n gogamis)) @ Ressir -

M(S)

Thus, passing to (hyper)cohomology and using Fact B.15, we obtain
residue maps
H*(M(T)) — H*™(M(5))

w.r.t. o which we also denote by Resg .
Res$ r does indeed depend on the choice of an enumeration  of In(S, T'):

Remark B.18. Let 8 = (e;,,...€;, ) be another enumeration of In(S,T)
and let 0, 5 € ¥,, denote the permutation mapping j € {1,...,m} to ;.
Then, for a local section w as in (B.3) we have

dz dz

= LA A =R A+
Z1 Zm
dz; dz;

— 11 TN Tm A (Sgn(aa,,@) . nw) _|_ 7’](/‘/)
Ziq im

where 7, is not divisible by dzzi PNEEEIN % As the first term is used to
1] m

compute Resgp and the second term is used to compute Reng, we obtain

Resg,T = sgn(oa,p) - Res§ .

We can, however, get rid of these sign ambiguities by “twisting” by a
sign representation:

Remark B.19. Let 8 = (e;,,...€;, ) be another enumeration of In(S,T)
and o, 3 as in Remark B.18. Then, for c € H*(9(T)) we have the equality

(eiy, Ao n€)® Reng(c)
=(sgn(oqa,pg) - (€1 A ... Aep)) ® (sgn(oa,p) -Reng(c))
=(e1 A ... A em) @Resg p(c)

in det(C™&D) @ H*=™(M(S)).
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Definition B.20. Define the (absolute) residue morphism via

Resgp: H*(M(T)) — det(C™ET)) @ H =S (9n(5))

c(e1 Ao A em) ®Res ().

By Remark B.19, this definition does not depend on the choice of the enu-
meration a.

B.3 Properties of Residue Morphisms

Now we observe that absolute residue maps satisfy some compatibility
relations with other structures mentioned above. In Subsection 2.1, these
will be crucial in proving the cooperad axioms for the gravity cooperad.

Proposition B.21 (compatibility with the group action). Assume that T
has a single internal edge e, i.e. T >1 Cy. Let o € ¥,. Then the action of
o on M, takes the stratum OM(T) to the stratum M(o(T)), where o(T) is
the image of T under the action of o on I, given by permuting the labels
(cf. Remark A.G). In particular, we have an isomorphism o.: M(T) =
M(o(T)). Moreover, since the underlying trees of T and o(T') coincide, we
can identify In(o(T)) with {e} = In(T).
With these notations, we have a commutative diagram

*

H* (M) . H* (M)
ReSO(T),Cnl J{RGST,CTL
det(Cleh @ H* 1 (M(a(T))) ot det(Cleh) @ H*—1(M(T))

Proof. First we note that since o: 9,, — 9M,, maps strata to strata, pulling
back along ¢ yields a morphism

o*: (ja(S),Cn)*Q.ﬁ(J(S)) (IOg aﬁ(U(S))) - (jS,C’n)*Q.ﬁ(S) (IOg aﬁ(s))

for all S > 9, which induces ox: H*(9M(c(S))) — H*(M(S)) on cohomol-
ogy.

Now we consider (e) both as an enumeration of In(7") and as an enumer-
ation of In(o(T)). After trivializing det(C{¢}) via (e), we only need to show
that on the level of logarithmic forms, the diagram

*

Qﬁn (log 0M1,,) Q;—nn (log 09M,,)
Resge()T) 7 Cnl lResgf’ >Cn

. o—1 T . o—1 YT
(]U(T),Cn)*Qﬁ(O(T))(IOg am(U(T))) T (‘]T’C")*Qﬁ(T) (IOg am(T))
commutes.
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Note that for x € 9(T), if v is a chart centered at = compatible with
(e) as an enumeration of In(T), then v o 0! is a chart centered at o(x) €
M(o(T)) compatible with (e) as an enumeration of In(o(T)). Thus, since
residues on the both sides of the above diagram are locally given by “omitting

the first coordinate” in a compatible chart, the two compositions coincide.
O

Proposition B.22 (compatibility with product decompositions). Let T' €
Ip, m € N, RR € 9, such that T" > T and R' > R. Further let

i€ {l,...,n —1}. In this situation we have T' o; R' > T o; R and an
identification In(T" o; R/, T o; R) =~ In(T",T)U In(R’, R) which induces an
isomorphism

b1 s det(CPTOR TR qet(C™TT) @ det(CFR)),

With these notations, the diagram

ReSToi R/, To;R

T

H* (T o; R)) det(CIn(T’oiR’,ToiR)) ®H-—\In(T’oiR’,ToiR)l(m(T/ o; R'))
H*(M(T) x M(R)) det(C™(T0iBLToiR)y @ pre=I (T oi R\ ToiR) (9 (") x OM(R'))
yT/,T;R/,R@n
" det(C™T" 1)) @ det(C™F 7)) @ H*~I™T" Dlop(T")) @ H*~ & BlI(9(R'))
lid®f®id

H*ON(T)) @ H*(M(R)) det(C™T" 1)@ H*~I™T"DIn(T")) @ det(C™F Ry @ H*~ & BI(9n(R))

\/

ResT/’T ®ResR/7R

commautes.
Proof. Let a; = (e1,...,ex) be an enumeration of In(7",7T) and ay =
(f1,---, /1) an enumeration of In(R’,R). Then we have an enumeration

(1, sk f1,..., fi) of In(T",T)U In(R, R) which induces an enumeration
a=(g1,...,9k+1) of In(T" o; R, T o; R) such that

bR RGLA A Gr) =1 Ao ner) @ (fLt A A f).

Now we want to analyze the situation on the level of logarithmic forms.
For M(T) x M(R) resp. M(T") x M(R') we consider logarithmic forms
. 13214 O . (7! 13314 /
Qﬁ(T)xﬁ(R)(IOg OOM(T)xM(R))) resp. Qﬁ(T')xﬁ(R')(IOg OOM(T")xIM(R")))
whose definition is analogous to the logarithmic forms of Definition B.13 and
uses the induced stratification on the product spaces (cf. [PS08, Chapter 4]).
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Moreover, let (1, 72) € MM(T) x M(R) and 77 resp. v a chart of I (T) resp.
M(R) centered at xq resp. xo that is compatible with o resp. as.
e (log OM(T)) resp.

log 09(R)) which is given by dz—zll A A % A 1) TESP. dw—“’ll Al A

Next, let wy resp. wo be a local section of pr’l"Q“ﬁ

Pr3{G gy (

dw—“;l A b in the coordinates of 71 resp. 2. Then, using the trivializations of
determinants induced by the above mentioned enumerations and taking the
sign introduced by the braiding 7 into account, it is enough to show that
for w1 ® wo the compositions in the diagram

—1 * o
(Yo r,i) (ReSToiR’,ToiR)

T

(V) * U,y (0B OTUT 04 B)) (Wil )* (G, o, )2 87 T4 (g 69T o1 )

M(T'o;R')
w;}R,»*T Tw;}ﬁ,,i)*
Q- (log ATR(T) x IM(R))) G % i, r) Qs T TR (10 9OR(T') x TM(R')))
M(T) xM(R) T X JRGR)E Sy v (rY) g

E

_ prt () ™ log 6M(T)) ) @
m(m(logam(R)) % e—|In(R',R)| =
prf (G )« 2 2 log O(R) )

\/ e

@ [e3
pr;*< (ResT}YT)®pr§< (ResR%R)

|

pri Q% . (log OM(T)) @ priQs

coincide up to the sign (—1)“~*)* where % denotes the chain-level Kiinneth
morphism given on the level of differential forms by (® & — ( A &.

Note that the bottom-right composition maps w1 ®ws to (V5 )* (A p).
Now, in order to make the chart (y; x v2) o \IIEIRZ compatible with «, one

has to permute the last u — k coordinates of ; past the first [ coordinates
of 72, which introduces the sign (—1)®~%)\. Then (\I/i%’i)*(Res%oiR,,ToiR)

“removes the coordinates z1,..., zg, wi,...,w;”, so that the left-top compo-
sition maps w; ® wy to (—1)(“_k)'l(\lf;75%’i)*(n A ) which has the required
sign. O

Proposition B.23 (compatibility with sequences of edge contractions). Let
R > S =T be sequence of internal edge contractions. Then the decomposi-
tion In(R,T) = In(S,T)V In(R, S) yields an isomorphism

ORST: det(CIn(S’T)) ®det(@In(R$)) =) det(@In(R,T))
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such that the composition

H*(
Ress, T det(@ln(S,T)) QH* |In(S,T) |(§)JI
id®Resg, s

(
(

det(@In(ST)) ® det(CIH(R S)) Q H*™ | In(S,T)|—| In(R,S)| m(R
®R,s,7®id (

I
det(@ln(RT)) ® H*™ |In(R,T) |(
is equal to Resg .

Proof. Let a; = (eq, ..., ex) be an enumeration of In(S, 7)) and g = (f1,..., fi)
an enumeration of In(R, S), so that a = (eq, ..., e, f1,-.., fi) is an enumer-
ation of In(R,T).

Then Resy’g o Resgly = Resf  since on the level of logarithmic forms,
both sides are locally given by “omitting first k£ + [ coordinates” on charts
compatible with a.

Moreover, since

drsr(lern...ne)@(fin...Anfi))=erAn...negAfin.Afl

this identity is compatible with the signs and thus yields the desired identity
for the absolute residue morphisms. ]

B.4 The Residue Spectral Sequence

We are now going to present a spectral sequence which relates the coho-
mology of M, with the cohomology of M,,. Similar spectral sequences were
used in [GK94] and [Get95], and more recently in [AP15] and [DV15] to
establish Koszul duality relations for various versions of the gravity operad.
The variant we use is from [DV15].

Fact B.24 ([DV15, Proposition 3.6]). Consider the double complex of sheaves
on M, given by

P . 9 m
HPI T@ (Jr)+ Q (T) (log 09M(T))
€In
| In(T)|=p
where the vertical differential is given by the usual de Rham differential and
the horizontal differential is given by the sum of the residue morphisms

() (ResEly ) + (i)l (log G(T)) — ()2 #) (1og 6T

for allT' >1 T such that T =T'/e.
This double complex induces a spectral sequence
EP? = @ HIP(OM(T)) = HPTI(IM,,)
TeT,
| In(T)|=p

of representations of ¥, computing the cohomology of M,,.
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In fact, using additional information about Hodge structures, one can
show that this spectral sequence collapses on the Fs-page and describe its
FE,-page.

Fact B.25 ([DV15, Remark 3.12], [Get95, Section 3]). The residue spec-
tral sequence of Fact B.2/] collapses on the second page and the Ey-page is
concentrated on the li@ p=q.

In particular, H*(9M,,) is concentrated in even degrees and for q € IN, the
transition from the Ey-page to the Fs = Eo-page yields an eract sequence

494 qla q94—1.q —
0—H'M,) ~— @ HT'OMD) 2>...— O H(MT)) — H*(M,) — 0.
TeTn TeTy
| In(T)|=1 ITn(T)|=q

This exact sequence is used in Subsection 2.2 to establish the Koszul
duality between the gravity operad and the hypercommutative operad.
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