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Introduction

First introduced by May in [May72], operads are a crucial part of modern
mathematics. Roughly speaking, an operad is a sequence pPpnqqnPN where
Ppnq corresponds to a collection of n-ary operations. These are equipped
with certain structure morphisms corresponding to inserting the result of
an operation into another one, and these structure maps are subject to
certain relations dictated by the fact that a different ordering of multiple
insertions may yield the same result. Thus, beyond their initial application
in homotopy theory, operads provide a general framework for dealing with
“structures with (higher) operations”.

The main parts of this thesis assume some familiarity with basics of
operads. We refer to [LV12] for a contemporary depiction of various aspects
of them.

As monoid objects in an abelian category with a monoidal structure, op-
erads can be considered as generalizations of rings and thus algebraic objects
on their own. In fact, one of the important breakthroughs in the theory of
operads was the generalization of concepts such as quadratic algebras, their
Manin products and Koszul duality to the context of operads as initiated by
Ginzburg and Kapranov in [GK94]. This thesis deals with two phenomena
that are significant examples of this aspect of operads.

The first section of this thesis is dedicated to considering quadratic al-
gebras and ultimately quadratic operads as an instance of a general concept
of duality. This concept, which Boyarchenko and Drinfeld study in [BD13]
under the name of “Grothendieck–Verdier categories”, deals with monoidal
categories pM,b,1q together with a “dualizing object” K P M such that
for every Y P M, the functor X ÞÑ HompX b Y ,Kq is representable by an
object DpY q P M and such that these objects can be assembled into an
equivalence D : Mop Ñ M (cf. Definition 1.4). It is an abstract formulation
of Verdier duality and other similar phenomena in algebraic geometry.

As pointed out by Manin in [Man17], quadratic algebras and quadratic
operads yield examples of Grothendieck–Verdier categories where the monoi-
dal structure is given by the respective black product and the duality functor
D is given by the respective quadratic duality (cf. Remark 1.17 and Corol-
lary 1.45). However, it turns out that these examples unfortunately do not
satisfy many properties which are prominent in other examples (cf. [BD13,
1.2]). For example, the dualizing object is not the monoidal unit (cf. Propo-
sition 1.22 resp. Proposition 1.48). Moreover, for quadratic operads, one
cannot even construct a comparison morphism XbY Ñ D´1pDpXqbDpY qq

(cf. Proposition 1.49).
The other example of operadic algebra which this thesis deals with is

the Koszul duality between the hypercommutative operad and the gravity
operad. The hypercommutative operad is given by the homology of com-
pactified moduli spaces of marked genus 0 curves and has been important in
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mathematical physics since Kontsevich and Manin showed in [KM94] that
the quantum cohomology of a projective variety (over Q) yields a hypercom-
mutative algebra. The gravity operad, as shown by Ginzburg and Kapranov
in [GK94] and by Getzler in [Get95], is the Koszul dual of the hypercom-
mutative operad and related to the moduli spaces of smooth marked genus
0 curves. This can be seen as an analogue of the Koszul duality between
the commutative and the Lie operad – in fact, the former is a suboperad of
the hypercommutative operad and the latter is a suboperad of the gravity
operad.

Based on the approach of [GK94] and [Get95], the second section of this
thesis gives a detailed description of the gravity operad (cf. Subsection 2.1)
and concludes with its relation to the hypercommutative operad via Koszul
duality (cf. Theorem 2.7). This approach to the gravity operad uses some
geometric properties of moduli spaces of marked genus 0 curves extensively.
Therefore, the required results about these moduli spaces are reviewed in
Appendix B. Moreover, Appendix A deals with basics on trees, which are
crucial in dealing with operads and stratifications of the above mentioned
compactified moduli spaces.

Notations and Conventions

Here we fix some notations and conventions which are used throughout
the thesis.

Notation 0.1. When dealing with functors and natural transformations,
we usually use the symbols , , and as variables which can stand
for both objects and morphisms. For example, the Hom-functor could be
denoted by Homp , q.

For monoidal categories, we use standard terminology which can be
found, for example, in [Mac98] or [BL11].

Notation 0.2. When we say that pM,b,1, α, λ, ρq is a monoidal category
we mean the following:

• M is the underlying category,
• b : M ˆ M Ñ M is the monoidal product,
• 1 P M is the unit object,
• α : p b q b ñ b p b q is the associator,
• λ : 1 b ñ is the left unitor,
• ρ : b 1 ñ is the right unitor.
We may suppress parts of this data when they are clear from the context.

Notation 0.3. When dealing with braided monoidal categories we will de-
note the braiding b ñ b with τ .

We also need to fix notation for some concepts from basic (linear) alge-
bra.
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Notation 0.4. We denote by Σn the symmetric group on n letters.

Convention 0.5. • For a set S, let CS denote the free C-vector space
on S. When working with graded vector spaces, we put each basis
element of S into degree 1, so that CS is concentrated in degree 1.

• For a finite dimensional (graded) C-vector space V let detpV q denote
its determinant, i. e. its highest exterior power

Źdim V V . Note that if
V is concentrated in degree k, then detpV q is concentrated in degree
k ¨ dimpV q.

Remark 0.6. The functor

FinSet Ñ GrVectC
S ÞÑ detpCSq

from the category of finite sets to the category of graded C-vector spaces can
be made into a strong monoidal functor pFinSet,>,Hq Ñ pGrVectC,bC,Cq.
Indeed, we have an isomorphism

Ź0
CH – C and for finite sets S, S1 there

is a natural isomorphism

detpCSq b detpCS1

q
–
ÝÑ detpCS>S1

q

pv1 ^ . . .^ v|S|q b pv1
1 ^ . . .^ v1

|S1|q ÞÑ pv1 ^ . . .^ v|S| ^ v1
1 ^ . . .^ v1

|S1|q.

We we will often have a decomposition S “ S1 9YS2 of a finite set as a
disjoint union and consider the induced isomorphism detpCS1

q b detpCS2
q –

detpCSq on determinants. Such isomorphisms will be denoted by ϕ with
some decoration.

Next, we fix some conventions about operads. As mentioned before, we
will not review the general theory of operads, but instead use [LV12] as a
reference.

Convention 0.7. • By a Σ-module in a category C we mean collection
E “ pEpnqqnPN` of objects in C such that each Epnq is equipped with
an action of Σn. Morphisms of Σ-modules are defined to be levelwise
equivariant morphisms.

• By a (co)operad we mean a non-unital symmetric (co)operad. While
dealing with concrete (co)operads, we will use the definition given by
infinitesimal (co)compositions. Sometimes we will consider elements of
the n-th level of an operad as n-ary operations. We refer to [LV12, 5.3]
for a various definitions of operads and to [LV12, 5.7] for cooperads.

• For a Σ-module E, by FpEq we denote the free operad generated by
E (as in [LV12, 5.4] and [GK94, 2.1]).

• For an operad P, we denote by ΩP its cobar construction (as in [LV12,
6.5] and [GK94, 2.1]).
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We will also need some notation about (co)homology of spaces.

Notation 0.8. Let X, Y be spaces.
• When no explicit coefficients are given, H‚pXq resp. H‚pY q will denote

homology resp. cohomology with C-coefficients.
• The Künneth isomorphisms H‚pXˆY q – H‚pXqbH‚pY q and H‚pXˆ

Y q – H‚pXq bH‚pY q (in C-coefficients) as well as variations of these
will be denoted by κ.
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1 Grothendieck–Verdier Categories and Manin Prod-
ucts

In this section we interpret Manin products of quadratic algebras (as
defined in [Man87]) resp. quadratic operads (as defined in [GK95]) in the
context of Grothendieck–Verdier categories, i. e. monoidal categories with a
“dualizing object”.

The moral of our considerations can be summarized as follows: Both for
quadratic algebras and quadratic operads the respective white product can
be obtained by transferring the respective black product along the respective
quadratic duality, which yields examples of Grothendieck–Verdier categories.
However, neither of these examples are r-categories. For quadratic algebras,
one can still construct a comparison morphism between the two monoidal
products in question even though these do not form an r-category.

We mostly follow the conventions of Boyarchenko and Drinfeld from
[BD13], but variants of the concept that they call “Grothendieck–Verdier
categories” was studied by Barr under the name of “˚-autonomous cate-
gories” in [Bar79] and later works. It was observed in [Man17] that quadratic
algebras and quadratic operads fit into the framework of Grothendieck–
Verdier categories and we elaborate on the ideas presented there.

1.1 The Setup

We start with some generalities about transferring monoidal structures
along equivalences.

Notation 1.1. For the rest of this subsection we fix a monoidal category
pM,b,1, α, λ, ρq and an equivalence D : M Ñ Mop. Further, we fix a quasi-
inverse D´1 : Mop Ñ M along with natural isomorphisms η : D´1D – idM
and ε : DD´1 – idMop .

Remark 1.2. Transferring the monoidal structure on M and its opposite
along D, we obtain new monoidal structures on M:

pM,a, D´1p1q, ᾱ, λ̄, ρ̄q is given by the product

a “ D´1pDp q bDp qq,

where the associator ᾱ is the composition

D´1pDpD´1pDp q bDp qqq bDp qq

D´1pεbidq
ùùùùùùùñ D´1ppDp q bDp qq bDp qq

D´1pα´1q
ùùùùùùñ D´1pDp q b pDp q bDp qqq

D´1pidbε´1q
ùùùùùùùùñ D´1pDp q bDpD´1pDp q bDp qqqq,
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the left unitor λ̄ is given by

D´1pDpD´1p1qq bDp qq

D´1pεbidq
ùùùùùùùñ D´1p1 bDp qq

D´1pλ´1q
ùùùùùùñ D´1pDp qq

η
ùñ ,

and the right unitor ρ̄ by

D´1pDp q bDpD´1p1qqq

D´1pidbεq
ùùùùùùùñ D´1pDp q b 1q

D´1pρ´1q
ùùùùùùñ D´1pDp qq

η
ùñ .

Similarly, pM,d, D´1p1q, 9α, 9λ, 9ρq is given by

d “ D´1pDp q bDp qq

and the “reversed” associator resp. unitors. In other words, pM,d, D´1p1qq

is the opposite of the monoidal structure pM,a, D´1p1qq.

In [BD13] the authors work with d, but we will work with a which fits
better to the classical definition of black and white products of quadratic
algebras resp. operads.

Next, we recall some definitions from [BD13].

Definition 1.3. An object K P M is called dualizing if for every Y P M
the functor Homp b Y ,Kq is representable by an object DpY q P M (in
which case these objects can be assembled into a functor D : M Ñ Mop)
and D : M Ñ Mop is an equivalence.

Definition 1.4. A Grothendieck–Verdier category (or GV category) is a
monoidal category together with a dualizing object.

Definition 1.5. A Grothendieck–Verdier category is called an r-category if
the chosen dualizing object is the monoidal unit. (In particular, in this case
the monoidal unit is a dualizing object.)

If one also assumes that the Grothendieck–Verdier category in ques-
tion is an r-category, one can easily construct a natural transformation

b ñ d which is compatible with the respective associators. How-
ever, in the cases of quadratic algebras resp. operads with the black product,
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which are of interest for us, the monoidal unit is not a dualizing object (cf.
Proposition 1.22 resp. Proposition 1.48). In the case of quadratic algebras
a morphism between the two products can still be constructed even though
quadratic algebras with quadratic duality do not form an r-category (cf.
Proposition 1.23).

1.2 Quadratic Algebras

We start by establishing some conventions and recalling some definitions.

Notation 1.6. We fix a ground field k for the rest of this section. All
algebras, vector spaces etc. are going to be over k.

The operation ˚ will denote k-duality, i. e. the functor Homkp , kq. For
a subspace W of a k-vector space V , we will denote by WK the subspace
tf P V ˚ | @w P W : fpwq “ 0u Ď V ˚.

Moreover, b will denote the tensor product over k. While working with
such concrete monoidal structures, we will be less pedantic about the asso-
ciators and unitors.

Definition 1.7. • A quadratic algebra A “
À

nPNAn is an N-graded
algebra which is a quotient of a free algebra FpV q on a finite dimen-
sional N-graded vector space which is concentrated in degree 1 by an
ideal generated by a space of relations R Ď V b V “ FpV q2.

• The category QA of quadratic algebras has as objects quadratic alge-
bras and as morphisms algebra morphisms which respect the grading.

Notation 1.8. Given a quadratic algebra A, A1 is its space of generators.
We will denote its space of relations by RpAq Ď A1 bA1.

Given a finite dimensional vector space V and a subspace R Ď V b V ,
ApV,Rq will denote the quadratic algebra FpV q{pRq.

Remark 1.9. Given quadratic algebras A and B, restriction to the first
graded piece induces a bijection

HomQApA,Bq – tf P HomkpA1, B1q | pf b fqpRpAqq Ď RpBqu

by the universal property of free algebras and quotient algebras.

Definition 1.10. The quadratic dual construction on QA is given by
! “ Ap ˚

1 ,Rp qKq

where we implicitly identify ˚
1 b ˚

1 with p 1 b 1q˚.

Remark 1.11. The quadratic dual construction defines an equivalence
QA Ñ QAop. Indeed, identifying the double dual of a finite dimensional
vector space with the space itself and the “double complement” of a subspace
with itself, we see that pp q!q! – .

As we are going to see in Corollary 1.19, this equivalence is in fact
induced by a dualizing object with respect to a monoidal structure on QA.
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We now recall the definitions of black and white products of quadratic
algebras following [Man87].

Notation 1.12. Let σ2,3 denote the natural transformation

b b b ñ b b b

which swaps the second and the third component.

Definition 1.13. The black product of quadratic algebras is defined as

‚ “ Ap 1 b 1, σ2,3pRp q b Rp qqq.

Remark 1.14. Let V be a finite-dimensional vector space, R Ď V b V
a subspace. Consider the natural isomorphism ρ : V b k – V given by the
right unitor of the monoidal structure on k-vector spaces. Then, Fpρq2 : pV b

kq b pV b kq – V b V maps σ2,3pR b k b kq isomorphically to R. Thus, by
Remark 1.9, we have a natural isomorphism ApV,Rq ‚ Apk, kbkq – ApV,Rq

of quadratic algebras.
In fact, also the left unitor, the associator and the braiding of pVectk,bk, kq

extend in a similar way to quadratic algebras to yield a symmetric monoidal
structure on QA with ‚ as the monoidal product and Apk, k b kq as the
monoidal unit.

Definition 1.15. The white product of quadratic algebras is defined as

˝ “ Ap 1 b 1, σ2,3pRp q b b2
1 ` b2

1 b Rp qqq.

Remark 1.16. Let V be a finite-dimensional vector space, R Ď V b V a
subspace. Consider the natural isomorphism ρ : V bk – V given by the right
unitor of the monoidal structure on k-vector spaces. Then, Fpρq2 : pV bkqb

pV b kq – V b V maps σ2,3pR b k b kq “ σ2,3pR b k b k ` V b V b 0q

isomorphically to R. Thus, by Remark 1.9, we have a natural isomorphism
ApV,Rq ˝ Apk, 0q – ApV,Rq of quadratic algebras.

In fact, also the left unitor, the associator and the braiding of pVectk,bk, kq

extend in a similar way to quadratic algebras to yield a symmetric monoi-
dal structure on QA with ˝ as the monoidal product and Apk, 0q as the
monoidal unit.

Remark 1.17. The monoidal structure of Remark 1.16 is essentially the
one obtained by transferring the black product along the quadratic dual
construction (as in Remark 1.2). Indeed, given two quadratic algebras A
and B, the generating space of pA! ‚B!q! is

pA˚
1 bB˚

1 q˚ – ppA1 bB1q˚q˚ – A1 bB1 “ pA ˝Bq1

and its space of relations is given by

σ2,3pRpAqK b RpBqKqK – σ2,3ppRpAqKqK b ppB˚
1 q˚qb2 ` ppA˚

1q˚qb2 b pRpBqKqKq

– σ2,3pRpAq bBb2
1 `Ab2

1 b RpBqq “ RpA ˝Bq.
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In order to put quadratic algebras into the context of GV categories, we
will need the following adjunction.

Remark 1.18. Let V,W,X be finite-dimensional vector spaces and R Ď

V b V , S Ď W b W resp. T Ď X b X subspaces. Consider the natural
isomorphism

HomkpV bW,Xq – HomkpV,W ˚ bXq . (1.1)

For f P HomkpV bW,Xq and its adjoint f̂ P HomkpV,W ˚ bXq we have
Fpfq2pσ2,3pRbSqq Ď T if and only if Fpf̂q2pRq Ď σ2,3pSK bXb2 `pW ˚qb2 b

T q.
Thus, by Remark 1.9, the isomorphism of (1.1) extends to a natural

adjunction isomorphism

HomQApApV,Rq ‚ ApW,Sq,ApX,T qq – HomQA

´

ApV,Rq,ApW,Sq! ˝ ApX,T q

¯

.

Now that we have the required tools about quadratic algebras at hand,
we can interpret these in the context of GV categories as it was remarked
in [Man17].

Corollary 1.19. The unit Apk, 0q of the white product of quadratic algebras
is a dualizing object for the black product of quadratic algebras since for all
A P QA, the functor HomQAp ‚A,Apk, 0qq – HomQA

`

, A! ˝ Apk, 0q
˘

is
representable by A! ˝ Apk, 0q – A!.

Next, we want to show that QA together with the black product is not
an r-category.

Definition 1.20. • We call a quadratic algebra A a square-zero exten-
sion if RpAq “ A1 bA1.

• Given a finite-dimensional vector space V , we denote by SqZpV q the
square-zero extension ApV, V b V q.

Remark 1.21. If A is a square-zero extension and B a quadratic algebra,
then HomQApB,Aq – HomkpB1, A1q via restriction to the first graded piece.

Indeed, every algebra morphism f : B Ñ A is uniquely determined by its
restriction f1 : B1 Ñ A1 by Remark 1.9 and the condition pf1 bf1qpRpBqq Ď

RpAq is trivially fulfilled if RpAq “ A1 b A1, so every linear map B1 Ñ A1
extends to an algebra homomorphism B Ñ A.

Proposition 1.22. The monoidal unit Apk, k b kq of the black product
of quadratic algebras is not a dualizing object, i. e. there is no equivalence
D : QA Ñ QAop s. t. for all B P QA the functor HomQAp ‚B,Apk, k b kqq

is represented by DpBq.
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Proof. Note that Apk, k b kq is a square-zero extension. Hence, by Re-
mark 1.21, for A,B P QA we have isomorphisms

HomQAp ‚B,Apk, k b kqq – Homkpp ‚Bq1,Apk, k b kq1q

“ Homkp 1 bB1, kq

– Homkp 1, B
˚
1 q

– HomQAp , SqZpB˚
1 qq .

Thus, if Apk, k b kq were a dualizing object, DpBq would be isomorphic
to SqZpB˚

1 q by the uniqueness of representing objects. However, a functor
with such values on objects cannot be an essentially surjective since (for
instance) the quadratic algebra Apk, 0q is not in its essential image because
it is not a square-zero extension.

Even though the monoidal unit of ‚ is not a dualizing object, we can
still obtain a natural transformation from ‚ to ˝.

Proposition 1.23. Given quadratic algebras A and B, the identity mor-
phism A1 b B1 Ñ A1 b B1 extends to a natural morphism A ‚ B Ñ A ˝ B
which is compatible with the respective associators.

Proof. Since

σ2,3pRp q b Rp qq Ď σ2,3pRp q b b2
1 ` b2

1 b Rp qq,

the identity map A1 bB1 Ñ A1 bB1 extends to a morphism A ‚B Ñ A ˝B
of quadratic algebras by Remark 1.9.

Since the associator of ‚ resp. ˝ is an extension of the associator of b on
the level of generators, the compatibility with the associators follows from
the compatibility of the identity map with the associators on the level of
generators.

1.3 Quadratic Operads

In this subsection, we are going to deal with operadic analogues of the
constructions and phenomena we have seen in the previous subsection. For
this we will be dealing with quadratic operads which were introduced in
[GK94]. Since some of our definitions are slightly different from the usual
ones, we will be more explicit than while we were working with quadratic
algebras even though everything is in direct analogy with their counterparts
in the usual theory of quadratic duality for quadratic operads.

Definition 1.24. • A (binary) quadratic operad is an operad pPpnqqnPN

which is a quotient of a free operad FpEq on a Σ-module E in the
category of finite dimensional k-vector spaces which is concentrated in
degree 2 (i. e. Epnq – 0 for n ‰ 2) by an operadic ideal generated by
a subrepresentation of relations R Ď FpEqp3q.
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• The category QO of quadratic operads has as objects quadratic op-
erads and as morphisms morphisms of operads, i. e. morphisms of Σ-
modules compatible with operadic compositions.

Notation 1.25. Given a quadratic operad P, Pp2q is its space of generators.
We will denote its representation of relations by RpPq Ď Pp3q.

Given a finite dimensional representation V of Σ2, we will abuse notation
and identify if with the Σ-module E with Ep2q “ V and Epnq “ 0 for
n ‰ 2. We will denote the quadratic operad generated by V with relations
R Ď FpV qp3q by PpV,Rq.

Remark 1.26. Given quadratic operads P and Q, restriction to the spaces
of generators induces a bijection

HomQOpP,Qq – tf P HomΣ2pPp2q,Qp2qq | pFpfqp3qqpRpPqq Ď RpQqu

by the universal property of free operads and quotient operads.

Next, we will need some conventions and remarks about representations
and their tensor products.

Definition 1.27. Given a representation V of the symmetric group Σn,
n P N, its dual V ˚ has as underlying vector space HomkpV, kq and each
σ P Σn acts via pσ ¨ fqpvq “ fpσ´1 ¨ vq.

Remark 1.28. Given a subrepresentation W of a Σn-representation V , the
k-subspace WK Ď V ˚ is Σn-invariant, thus naturally a Σn-representation.

Remark 1.29. Given representations V , W of Σn, V bW can be endowed
with a natural action of Σn via σ ¨ pv b wq “ pσ ¨ vq b pσ ¨ wq for σ P Σn.

Remark 1.30. For all Σn-representations V and V the natural k-linear
evaluation maps

V Ñ pV ˚q˚

v ÞÑ pf ÞÑ fpvqq

and

V ˚ bW ˚ Ñ pV bW q˚

f b g ÞÑ pv b w ÞÑ fpvq ¨ gpwqq

are Σn-equivariant.
In particular if the representations in question are finite dimensional, we

obtain isomorphisms V – pV ˚q˚ and V ˚ b W ˚ – pV b W q˚ of represen-
tations. In the following, whenever we write an isomorphism between such
representations, we will be using the above mentioned evaluation map.
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Convention 1.31. Let V be a Σ2-representation. Note that we have an
isomorphism

FpV qp3q – pV b V q ‘ pV b V q ‘ pV b V q

of k-vector spaces, where the summands correspond to the three composition
schemes for producing a (symmetric) ternary operation from two (symmet-
ric) binary operations. In the language of graftings, these schemes are given
as follows:

pµ ˝1 νqpa, b, cq “ µpνpa, bq, cq,

pµ ˝2 νqpa, b, cq “ µpa, νpb, cqq,

ppσ2,3qpµ ˝1 νqqpa, b, cq “ µpνpa, cq, bq,

where σ2,3 P Σ3 is the permutation which swaps 2 and 3.
We will denote the collection of these composition schemes by C and use

the symbols ˝t, ˝u etc. to refer to generic elements of this collection.

Remark 1.32. Let V be a finite dimensional Σ2-representation. Then,
using the description of FpV qp3q and FpV ˚qp3q as in Convention 1.31, the
evaluation morphisms of Remark 1.30 yield an isomorphism

FpV ˚qp3q
–
ÝÑ FpV qp3q˚

f ˝t f
1 ÞÑ

˜

v ˝u v
1 ÞÑ

#

fpvq ¨ f 1pv1q ˝t “ ˝u

0 otherwise

¸

which is Σ3-equivariant. In the following, whenever we write an isomorphism
between a representation of the form FpV ˚qp3q and a representation of the
form FpV ˚qp3q, we will be using this map.

Now we move on to define quadratic duality of operads. Our notion of
quadratic duality differs from the one in [GK94] because we do not twist
dual representations by the sign representation. With the original defini-
tion, quadratic operads still would not form an r-category since an analogue
of Proposition 1.48 would apply, but the non-existence of a comparison mor-
phism from the black product to the white product (cf. Proposition 1.49)
would merely be a sign issue on the level of generators. We use the non-
twisted version to emphasize that there is (also) a problem on the level of
relations.

Definition 1.33. The quadratic dual construction on QO is given by

! “ Ppp p2qq˚,Rp qKq

where we identify Rp qK Ď Fp qp3q˚ with a subrepresentation of Fp ˚qp3q

via the isomorphism of Remark 1.32.
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Remark 1.34. As in the case of quadratic algebras, the quadratic dual
construction defines an equivalence QO Ñ QOop. Indeed, identifying the
double dual of a finite representation with itself and the “double comple-
ment” of a subrepresentation with itself, we see that pp q!q! – .

As in the case of quadratic algebras, we will see in Corollary 1.47 that
this equivalence is in fact induced by a dualizing object with respect to a
monoidal structure on QO.

We are now going to define black and white products of quadratic op-
erads. These were introduced in [GK94] and their definition was corrected
in [GK95]. A more conceptual treatment which can also be applied to e. g.
properads can be found in [Val08]. Similar to the case of quadratic duality,
our definition of the black product differs from the usual ones by a sign.

We begin by defining some auxiliary maps.

Definition 1.35. Let V , W be finite dimensional representations of Σ2.
• The natural morphism

ϕV,W : FpV bW qp3q Ñ FpV qp3q b FpW qp3q

is given by the fact that the tensor product of a FpV q-algebra A with
a FpW q-algebra B has the structure of a FpV b W q-algebra which is,
on the level of operations, given by the formula

pµb νqpa1 b b1, a2 b b2, a3 b b3q “ µpa1, a2, a3q b νpb1, b2, b3q

for µ P FpV qp3q, ν P FpW qp3q, a1, a2, a3 P A, b1, b2, b3 P B. In the
description of Convention 1.31, this means that for v, v1 P V , w,w1 P W
and ˝t P C we have

ϕppv b wq ˝t pv1 b w1qq “ pv ˝t v
1q b pw ˝t w

1q.

• The morphism ψV,W is given by the composition

FpV qp3q b FpW qp3q – FpV ˚qp3q˚ b FpW ˚qp3q˚

– pFpV ˚qp3q b FpW ˚qp3qq˚

pϕV ˚,W ˚
q˚

ÝÝÝÝÝÝÝÑ FpV ˚ bW ˚qp3q˚

– FppV bW q˚qp3q˚

– FpV bW qp3q.

In particular, in the description of Convention 1.31, we have

ψppv ˝t v
1q b pw ˝u w

1qq “

#

pv b wq ˝t pv1 b w1q ˝t “ ˝u

0 otherwise

for v, v1 P V , w,w1 P W and ˝t, ˝u P C.
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Remark 1.36. Let V , W be finite dimensional representations of Σ2. Then,
ψV,W is surjective since elements of the form pvbwq˝t pv1 bw1q for v, v1 P V ,
w,w1 P W , ˝t P C generate FpV bW qp3q and are in the image of ψV,W .

Thus, in particular, ϕV,W is injective.

We can now define black and white products for quadratic operads.

Definition 1.37. The black product of quadratic operads is defined as

‚ “ Ppp p2qq b p p2qq, ψpRp q b Rp qqq.

With this definition of the black product, we also have to slightly modify
its unit object.

Definition 1.38. Let ktriv be the trivial 1-dimensional representation of Σ2.
Let RL Ď Fpktrivqp3q be the 1-dimensional subrepresentation generated by
the “Jacobi relation”

J :“ lpx1, lpx2, x3qq ` lpx2, lpx3, x1qq ` lpx3, lpx1, x2qq

for a generating binary operation l which corresponds to 1 P ktriv.
With these notations, we define L :“ Ppktriv, RLq.

Remark 1.39. Let V be Σ2-representation, R Ď FpV qp3q a subrepresen-
tation. Consider the natural isomorphism ρ : V b ktriv – V given by the
right unitor of the monoidal structure on σ2-representations. Then, since
ψppv ˝t wq b Jq “ pv b lq ˝t pw b lq for all v, w P V and ˝t P C, the iso-
morphism Fpρqp3q : FpV b ktrivqp3q – FpV qp3q maps ψpR b RLq isomor-
phically to R. Thus, by Remark 1.26, we have a natural isomorphism
PpV,Rq ‚ L – PpV,Rq of quadratic operads.

In fact, also the left unitor, the associator and the braiding of pΣ2 ´

Repk,b, ktrivq extend in a similar way to quadratic operads to yield a sym-
metric monoidal structure on QO with ‚ as the monoidal product and L as
the monoidal unit.

Definition 1.40. The white product of quadratic operads is defined as

˝ “ Ppp p2qq b p p2qq, ϕ´1pRp q b Fp p2qqp3q ` Fp p2qqp3q b Rp qqq.

Definition 1.41. Let ktriv be the trivial 1-dimensional representation of Σ2.
Let RCom Ď Fpktrivqp3q be the 2-dimensional subrepresentation generated by
the “associativity relations”

A1 :“ mpx1,mpx2, x3qq ´mpx2,mpx3, x1qq,

A2 :“ mpx2,mpx3, x1qq ´mpx3,mpx1, x2qq

for a generating binary operation m which corresponds to 1 P ktriv.
With these notations, we define Com :“ Ppktriv, RLq. The name Com

comes from the fact that Com classifies commutative algebras.
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Remark 1.42. Let V be Σ2-representation, R Ď FpV qp3q a subrepresen-
tation. Consider the natural isomorphism ρ : V b ktriv – V given by the
right unitor of the monoidal structure on σ2-representations. Then, since
the preimage of R b Fpktrivqp3q ` FpV qp3q b RCom under ϕ consists of el-
ements of the form

ř

v,v1,˝t
pv b mq ˝t pv1 b mq for

ř

v,v1,˝t
v ˝t v

1 P R, the
isomorphism Fpρqp3q : FpV bktrivqp3q – FpV qp3q maps ϕ´1pRbFpktrivqp3q `

FpV qp3q b RComq isomorphically to R. Thus, by Remark 1.26, we have a
natural isomorphism PpV,Rq ˝ Com – PpV,Rq of quadratic operads.

In fact, also the left unitor, the associator and the braiding of pΣ2 ´

Repk,b, ktrivq extend in a similar way to quadratic operads to yield a sym-
metric monoidal structure on QO with ˝ as the monoidal product and Com

as the monoidal unit.

Now we want to show that, as for quadratic algebras, this monoidal
structure is essentially the one obtained by transferring the black product
along the quadratic dual construction (as in Remark 1.2).

Lemma 1.43. Let V and W be finite dimensional Σ2-representations. Fur-
ther let α P FpV ˚qp3q b FpW ˚qp3q and β P FpV b W qp3q. Consider α as an
element of pFpV qp3q bFpW qp3qq˚ and ψpαq P FpV ˚ bW ˚qp3q as an element
of FpV b W qp3q˚ via the identifications of Remark 1.30 and Remark 1.32.
Then we have αpϕpβqq “ pψpαqqpβq.

Proof. Using Convention 1.31, it is enough to show the statement for α “

pf ˝t f
1q b pg ˝u g

1q and β “ pv b wq ˝s pv1 b w1q where v, v1 P V , w,w1 P W ,
f, f 1 P V ˚, g, g1 P W ˚ and ˝s, ˝t, ˝u P C.

In this case we have

αpϕpβqq “ ppf ˝t f
1q b pg ˝u g

1qqpϕppv b wq ˝s pv1 b w1qqq

“ ppf ˝t f
1q b pg ˝u g

1qqppv ˝s v
1q b pw ˝s w

1qq

“ pf ˝t f
1qpv ˝s v

1q ¨ pg ˝u g
1qpw ˝s w

1q

“

#

fpvqf 1pv1q ¨ gpwqg1pw1q ˝t “ ˝s “ ˝u

0 otherwise

and

pψpαqqpβq “ pψppf ˝t f
1q b pg ˝u g

1qqqppv b wq ˝s pv1 b w1qq

“

#

ppf b gq ˝t pf 1 b g1qqppv b wq ˝s pv1 b w1qq ˝t “ ˝u

0 otherwise

“

#

fpvqgpwqf 1pv1qg1pw1q ˝t “ ˝u “ ˝s

0 otherwise

which proves the claim.
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Proposition 1.44. Let Σ2-representations V , W and subspaces R Ď FpV qp3q,
S Ď FpW qp3q be given. Then the natural evaluation isomorphism ev : V ˚ b

W ˚ – pV bW q˚ extends to an isomorphism

PpV,Rq! ‚ PpW,Sq! – pPpV,Rq ˝ PpW,Sqq!

of quadratic operads.

Proof. By Remark 1.26, it is enough to show that under the identification
of Remark 1.32, the subrepresentation

Fpevqp3qpRpPpV,Rq!‚PpW,Sq!qq “ Fpevqp3qpψpRKbSKqq Ď FppV bW q˚qp3q

coincides with the subrepresentation

RppPpV,Rq˝PpW,Sqq!q “ ϕ´1pRbFpW qp3q`FpV qp3qbSqK Ď FpVbW qp3q˚.

Now let α P Fpevqp3qpψpRK b SKqq. Since ψ is surjective (cf. Re-
mark 1.36) and Fpevqp3q is an isomorphism, we can find an α1 with α “

Fpevqp3qpψpα1qq. Then, using Lemma 1.43 and injectivity of ϕ (Remark 1.36),
we obtain

α “ Fpevqp3qpψpα1qq P ϕ´1pR b FpW qp3q ` FpV qp3q b SqK ô

@β P ϕ´1pR b FpW qp3q ` FpV qp3q b Sq : ψpα1qpβq “ 0 ô

@β P ϕ´1pR b FpW qp3q ` FpV qp3q b Sq : α1pϕpβqq “ 0 ô

@β1 P R b FpW qp3q ` FpV qp3q b S : α1pβ1q “ 0 ô

α1 P RK b SK,

which yields the desired equality.

Corollary 1.45. There are natural isomorphisms

! ‚ ! – p ˝ q!

respectively
p ! ‚ !q! – ˝

of functors QO ˆ QO Ñ QOop respectively QO ˆ QO Ñ QO, i. e. ˝ can
be obtained by transferring ‚ along ! as in Remark 1.2.

Similar to the case of quadratic algebras, we have an adjunction relating
black product, white product and quadratic duality.

Proposition 1.46. For every quadratic operad P, the functor ‚ P is left
adjoint to P! ˝ .
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Proof. Let quadratic operads P “ PpV,Rq, Q “ PpW,Sq and R “ PpX,T q

be given. Using Remark 1.26, we want to show that the natural isomorphism

HomΣ2pW b V ,Xq – HomΣ2pW,V ˚ bXq (1.2)

on the level of generators can be extended to an isomorphism

HomQOpQ ‚ P,Rq – HomQO

´

Q,P! ˝ R
¯

.

Now let f P HomΣ2pW b V ,Xq be given. Let f̂ P HomΣ2pW,V ˚ bXq

be its adjoint. First we want to analyze some evaluations. Let v, v1 P V ,
w,w1 P W , g, g1 P X˚ and ˝s, ˝t, ˝u P C. Then, under the identifications of
Remark 1.30 and Remark 1.32, we have

pψppw ˝s w
1q b pg ˝t g

1qqqpFpf̂qp3qpv ˝u v
1qq

“

#

ppw b gq ˝t pw1 b g1qqpFpf̂qp3qpv ˝u v
1qq ˝s “ ˝t

0 otherwise

“

#

pf̂pvqqpw b gq ¨ pf̂pv1qqpw1 b g1q ˝s “ ˝t “ ˝u

0 otherwise

“

#

gpfpv b wqq ¨ g1pfpv1 b w1qq ˝s “ ˝t “ ˝u

0 otherwise
.

Similarly, we also have

pg ˝t g
1qpFpfqp3qpψppv ˝u v

1q b pw ˝s w
1qqqq

“

#

pg ˝t g
1qpFpfqp3qppv b wq ˝u pv1 b w1qqq ˝s “ ˝u

0 otherwise

“

#

gpfpv b wqq ¨ g1pfpv1 b wqq ˝s “ ˝u “ ˝t

0 otherwise.

Thus we see that

pψppw˝sw
1qbpg˝tg

1qqqpFpf̂qp3qpv˝uv
1qq “ pg˝tg

1qpFpfqp3qpψppv˝uv
1qbpw˝sw

1qqqq.
(1.3)

Now note that the inclusion

Fpf̂qp3qpRq Ď RpP! ˝ Rq “ ϕ´1pSK b FpXqp3q ` FpW ˚qp3q b T q (1.4)

holds if and only if for all α P ϕ´1pSK bFpXqp3q`FpW ˚qp3qbT qK and β P R
we have αpFpf̂qp3qpβqq “ 0. By Proposition 1.44 we can identify ϕ´1pSK b

FpXqp3q`FpW ˚qp3qbT qK with ψpSbTKq, so the inclusion (1.4) holds if and
only if for all β P R, γ P S and δ P TK we have pψpγ b δqqpFpf̂qp3qpβqq “ 0.
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Now by (1.3), under suitable identifications of duals, for β P R, γ P S and
δ P TK we have

pψpγ b δqqpFpf̂qp3qpβqq “ δpFpfqp3qpψpβ b γqqq.

Thus the inclusion (1.4) holds if and only if for all β P R, γ P S and δ P TK

we have δpFpfqp3qpψpβ b γqqq “ 0, i. e. Fpfqp3qpψpS b Rqq Ď T . Hence the
the adjunction isomorphism of (1.2) can indeed be extended to quadratic
operads.

With this adjunction at hand, we can put the quadratic duality of
quadratic operads into the context of GV categories as it was done in
[Man17].

Corollary 1.47. The unit Com of the white product of quadratic operad
is a dualizing object for the black product of quadratic operads since for all
P P QO, the functor HomQOp ‚ P, Comq – HomQO

`

,P! ˝ Com
˘

is
representable by P! ˝ Com – P!.

Now we will show that, as in the case of quadratic algebras, QO together
with the black product is not an r-category.

Proposition 1.48. The monoidal unit L of the black product of quadratic
operads is not a dualizing object, i. e. there is no equivalence D : QO Ñ

QOop s. t. for all P P QO the functor HomQOp ‚ P,Lq is represented by
DpPq.

Proof. The adjunction of Proposition 1.46 yields for all P,Q P QO natural
isomorphisms

HomQOpQ ‚ P,Lq – HomQO

´

Q,P! ˝ L
¯

.

Thus, if L were a dualizing object, DpPq would be isomorphic to P! ˝L by
the uniqueness of representing objects.

Note that we have

Ppktriv,Fpktrivqp3qq! ˝ L

–Ppk˚
triv b ktriv, ϕ

´1p0 b Fpktrivqp3q ` Fpk˚
trivqp3q b RpLqqq

“Ppk˚
triv b ktriv, ϕ

´1pFpk˚
trivqp3q b RpLqqq.

Now the elements which are in the image of ϕ are of the form
ř

˝tPC c˝t ¨

pf ˝t lq b pf ˝t lq where f is a generator of k˚
triv and c˝t P k, whereas

non-trivial elements of Fpk˚
trivqp3q b RpLq always have summands with dif-

ferent composition schemes in their two tensor factors. Thus we obtain
ϕ´1pFpk˚

trivqp3q b RpLqq “ 0 and hence

Ppktriv,Fpktrivqp3qq! ˝ L – Ppk˚
triv b ktriv, 0q – Fpktrivq.
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Now using Remark 1.34, Corollary 1.45 and Remark 1.42 we obtain

Com! ‚ – Com! ‚ p !q! – pCom ˝ !q! – p !q! –

and similarly ‚ Com! – . Thus, by the uniqueness of monoidal units, we
have Com! – L. Hence we obtain

Com! ˝ L

–L˝ L

–Ppktriv b ktriv, ϕ
´1pRpLq b Fpktrivqp3q ` Fpktrivqp3q b RpLqqq.

As above, elements in the image of ϕ are of the form
ř

˝tPC c˝t ¨ pl ˝t lq b

pl ˝t lq, but elements of RpLq bFpktrivqp3q `Fpktrivqp3q bRpLq always have
summands with different composition schemes in their two tensor factors.
Thus we obtain ϕ´1pRpLq bFpktrivqp3q `Fpktrivqp3q bRpLqq “ 0 and hence

Com! ˝ L – Ppktriv b ktriv, 0q – Fpktrivq.

This means that the assignment P ÞÑ P! ˝ L maps the non-isomorphic
objects Ppktriv,Fpktrivqp3qq and Com onto isomorphic objects. Thus there
cannot be an equivalence of categories that is given by this assignment on
the objects.

In this situation, one may hope to mimic the construction of Proposi-
tion 1.23 to obtain a natural transformation ‚ ñ ˝ which is compatible with
the associators, but this approach does not work for quadratic operads.

Proposition 1.49. The natural transformation idb from the tensor prod-
uct functor for Σ2-representations to itself cannot be extended to a natural
transformation ‚ ñ ˝.

Proof. If that were the case, then we would in particular have a morphism
of quadratic operads

F : Com – Com ‚ L Ñ Com ˝ L – L

which restricts to idktriv : ktriv Ñ ktriv on generators. This map on the
generators extends to a morphism of operads Com Ñ L if and only if
RpComq Ď RpLq, which cannot be the case since dimpRpComqq “ 2
whereas dimpRpLqq “ 1.
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2 The Gravity Operad

The gravity operad, which was first introduced in [Get94] and in [GK94],
has several equivalent definitions. In this section we are going to construct
an incarnation of it using the homology of the moduli spaces Mn of smooth
n-marked genus 0 curves (cf. Definition B.1). This approach, which goes
back to [GK94] and [Get95], also paves the path to establishing the Koszul
duality between the gravity operad and the hypercommutative operad (cf.
Theorem 2.7).

2.1 The Gravity Cooperad

Since the residue maps which induce the (co)operadic (co)compositions
of the gravity (co)operad are better described in terms of cohomology, we
will first construct the gravity cooperad using the cohomology of Mn and
dualize this definition to obtain the gravity operad.

Definition 2.1. Let CoGrav be the Σ-module in the category of graded
C-vector spaces with

CoGravpnq :“ detpCnq bH‚´1pMn`1q

where the Σn-action on detpCnq is induced by permuting the coordinates of
Cn and the Σn-action on H‚´1pMn`1q is induced by the action on Mn`1
given by permuting the first n marked points.

Definition 2.2. Let k, l P N`, i P t1, . . . , ku. We define the infinitesimal
cocomposition morphism ∆i : CoGravpk` l´1q Ñ CoGravpkqb CoGravplq
of the gravity cooperad as follows:

Let e denote the unique internal edge of Ck`1 ˝i Cl`1. Let the bijection
fi : t1, . . . , k ` l ´ 1u 9Yteu – t1, . . . , ku 9Yt1, . . . , lu be given by

fipxq “

$

’

’

’

’

&

’

’

’

’

%

i P t1, . . . , ku x “ e

j P t1, . . . , ku x “ j P t1, . . . , k ` l ´ 1u, j ă i

j ´ i` 1 P t1, . . . , lu x “ j P t1, . . . , k ` l ´ 1u, i ď j ă i` l

j ´ l ` 1 P t1, . . . , ku x “ j P t1, . . . , k ` l ´ 1u, i` l ď j

.

Let

ϕi : detpCk`l´1q b detpCteuq
–
ÝÑ detpCkq b detpClq

be the isomorphism induced by fi.
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Now the infinitesimal cocomposition morphism ∆i is defined as the com-
position

CoGravpk ` l ´ 1q “ detpCk`l´1q bH‚´1pMk`lq

idbResCk`1˝iCl`1,Ck`l
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ detpCk`l´1q b detpCteuq bH‚´2pMpCk`1 ˝i Cl`1qq

idbΨ˚
Ck`1,Cl`1,i

ÝÝÝÝÝÝÝÝÝÝÑ detpCk`l´1q b detpCteuq bH‚´2pMk`1 ˆ Ml`1q

ϕibid
ÝÝÝÑ detpCkq b detpClq bH‚´2pMk`1 ˆ Ml`1q

idbκ
ÝÝÝÑ detpCkq b detpClq bH‚´1pMk`1q bH‚´1pMl`1q

idbτbid
ÝÝÝÝÝÑ detpCkq bH‚´1pMk`1q b detpClq bH‚´1pMl`1q

“ CoGravpkq b CoGravplq,
(2.1)

where ΨCk`1,Cl`1,i : Mk`1 ˆMl`1 Ñ MpCk`1 ˝i Cl`1q is the isomorphism of
Fact B.9 and Fact B.10.

Proposition 2.3. The cocomposition maps of Definition 2.2 endow CoGrav

with the structure of a cooperad.

Proof. Let k, l, i as in Definition 2.2.
Equivariance. We need to show that for σ P Σk, the diagram

CoGravpk ` l ´ 1q CoGravpkq b CoGravplq

CoGravpk ` l ´ 1q CoGravpkq b CoGravplq

∆i

θk,ipσq σbid

∆σpiq

(2.2)

commutes, where θk,i : Σk ãÝÑ Σk`l´1 is the inclusion defined in Notation A.12.
In order to show this, we will analyze the definition of ∆i resp. ∆σpiq step
by step and show the compatibility of each map in (2.1) with the action of
σ.

First, we note that Ck`1 ˝σpiq Cl`1 – θk,ipσqpCk`1 ˝i Cl`1q. Hence, by
Proposition B.21 and with the notation thereof, we have a commutative
diagram

H‚´1pMk`lq detpCteuq b H‚´2pMpCk`1 ˝i Cl`1qq

H‚´1pMk`lq detpCteuq b H‚´2pMpCk`1 ˝σpiq Cl`1qq

ResCk`1˝iCl`1,Ck`l

pθk,ipσq˚q´1 pidbθk,ipσq˚q´1

ResCk`1˝σpiqCl`1,Ck`l

.

Tensoring the vertical maps with

θk,ipσq : detpCk`l´1q Ñ detpCk`l´1q,
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we see that idbResCk`1˝iCl`1,Ck`l
and idbResCk`1˝σpiqCl`1,Ck`l

are compat-
ible with the action of σ.

Next, the compatibility of ΨCk`1,Cl`1,i resp. ΨCk`1,Cl`1,σpiq with the strata
of Mk`1 ˆ Ml`1 (cf. Fact B.9) and the Σk-action (cf. Fact B.10) yields a
commutative diagram

MpCk`1 ˝i Cl`1q Mk`1 ˆ Ml`1

MpCk`1 ˝σpiq Cl`1q Mk`1 ˆ Ml`1

θk,ipσq

ΨCk`1,Cl`1,i

σˆid

ΨCk`1,Cl`1,σpiq

.

Now taking cohomology and then tensoring the vertical maps with

θk,ipσq b ϕθk,ipσq : detpCk`l´1q b detpCteuq Ñ detpCk`l´1q b detpCtθk,ipσqpequq

yields the compatibility of id b Ψ˚
Ck`1,Cl`1,i and id b Ψ˚

Ck`1,Cl`1,σpiq with the
action of σ.

Moreover, we have a commutative diagram

t1, . . . , k ` l ´ 1u 9Yteu t1, . . . , ku 9Yt1, . . . , lu

t1, . . . , k ` l ´ 1u 9Yteu t1, . . . , ku 9Yt1, . . . , lu

fi

θk,ipσq 9Yid σ 9Yid

fσpiq

of sets coming from identifications of edges. Applying detpC q to this square
and tensoring the vertical maps with

ppσ ˆ idq˚q´1 : H‚´2pMk`1 ˆ Ml`1q Ñ H‚´2pMk`1 ˆ Ml`1q

yields the compatibility of ϕi b id and ϕσpiq b id with σ.
Finally, the compatibility of idbκ resp. idbτbid with the corresponding

actions of σ on their domains and targets follow directly from the naturality
properties of the Künneth isomorphism resp. the braiding. Thus, combining
the previous compatibility relations, we see that (2.2) indeed commutes.

The other equivariance relation is given by the commutativity of

CoGravpk ` l ´ 1q CoGravpkq b CoGravplq

CoGravpk ` l ´ 1q CoGravpkq b CoGravplq

∆i

ϑl,ipρq idbρ

∆i

for all ρ P Σl, where ϑl,i : Σl ãÝÑ Σk`l´1 is the inclusion defined in Nota-
tion A.12. Using the fact that Ck`1 ˝i Cl`1 – ϑl,ipρqpCk`1 ˝i Cl`1q, this can
be shown with a similar analysis as for the compatibility relation for σ P Σk.

Cocomposition axioms. Let m P N` and j P ti ` 1, . . . , ku. The parallel
cocomposition axiom requires that the diagram
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CoGravpk ` l `m´ 2q CoGravpk `m´ 1q b CoGravplq

CoGravpkq b CoGravpmq b CoGravplq

CoGravpk ` l ´ 1q b CoGravpmq CoGravpkq b CoGravplq b CoGravpmq

∆i

∆j`m´1

∆jbid

idbτ

∆ibid
(2.3)

commutes.
First we note that pCk`1 ˝jCm`1q˝iCl`1 and pCk`1 ˝iCl`1q˝j`l´1Cm`1

represent the same isomorphism class T P Tk`l`m´1. Let e P InpT q be
the edge which is used in grafting Ck`1 with Cl`1 in the grafting scheme
pCk`1 ˝i Cl`1q ˝j`l´1 Cm`1 and f P InpT q the edge which is used in grafting
Ck`1 with Cm`1 in the grafting scheme pCk`1 ˝j Cm`1q ˝i Cl`1.

Next, Proposition B.23 implies that the compositions

H‚´1
pMk`l`m´1q

idbResCk`m˝iCl`1,Ck`l`m´1
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ detpC

teu
q b H‚´2

pMpCk`m ˝i Cl`1qq

idbRespCk`1˝j Cm`1q˝iCl`1,Ck`m˝iCl`1
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ detpC

teu
q b detpC

tfu
q b H‚´3

pMppCk`1 ˝j Cm`1q ˝i Cl`1qq

idbϕT,Ck`m˝iCl`1,Ck`l`m´1 bid
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ detCInpT q

b H‚´3
pMpT qq

and

H‚´1
pMk`l`m´1q

idbResCk`l˝j`l´1Cm`1,Ck`l`m´1
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ detpC

tfu
q b H‚´2

pMpCk`l ˝j`l´1 Cm`1qq

idbRespCk`1˝iCl`1q˝j`l´1Cm`1,Ck`l˝j`l´1Cm`1
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑdetpC

tfu
q b detpC

teu
q b H‚´3

pMppCk`1 ˝i Cl`1q ˝j`l´1 Cm`1qq

idbϕT,Ck`l˝j`l´1Cm`1,Ck`l`m´1 bid
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ detCInpT q

b H‚´3
pMpT qq.

both coincide with ResT,Ck`l`m´1 . We are now going to relate the two com-
positions in (2.3) by expressing them in terms of ResT,Ck`l`m´1 .

We start with the top-right composition. By Proposition B.22, the dia-
gram

H‚´2pMpCk`m ˝i Cl`1qq H‚´1pMpCk`mqq b H‚´1pMpCl`1qq

detpCteuq b H‚´3pMpT qq detpCteuq b H‚´2pMpCk`1 ˝j Cm`1qq b H‚´1pMpCl`1qq

κ˝Ψ˚
Ck`m,Cl`1,i

ResT,Ck`m˝iCl`1 ResCk`1˝j Cm`1,Ck`m
bid

κ˝Ψ˚
Ck`1˝j Cm`1,Cl`1,i

commutes. Thus, after applying appropriate isomorphisms, we can replace
the map ResCk`1˝jCm`1,Ck`m

bid appearing in ∆j b id on the right side of
(2.3) with ResT,Ck`m˝iCl`1 .
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By Fact B.9 and with the notation thereof, we also have a commutative
diagram

H‚´3pMpT qq H‚´2pMpCk`1 ˝j Cm`1qq b H‚´1pMl`1q

H‚´1pMk`1q b H‚´1pMm`1q b H‚´1pMl`1q

H‚´3pMk`1 ˆ Ml`1 ˆ Mm`1q H‚´1pMk`1q b H‚´1pMl`1q b H‚´1pMm`1q

κ˝Ψ˚
Ck`1˝j Cm`1,Cl`1,i

pΨCk`1˝iCl`1,Cm`1,j`l´1˝

pΨCk`1,Cl`1,iˆidqq˚

pκ˝Ψ˚
Ck`1,Cm`1,j

qbid

idbτ

κ

since
ΨCk`1˝iCl`1,Cm`1,j`l´1˝pΨCk`1,Cl`1,iˆidq “ ΨCk`1˝j Cm`1,Cl`1,i˝pΨCk`1,Cm`1,jˆidq˝pidˆτq.

Now let the bijection

g : t1, . . . , k ` l ` m ´ 2u 9Y InpT, Ck`l`m´1q
–

ÝÑ t1, . . . , ku 9Yt1, . . . , lu 9Yt1, . . . , mu

be given by

gpxq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

i P t1, . . . , ku x “ e

j P t1, . . . , ku x “ f

t P t1, . . . , ku x “ t P t1, . . . , k ` l ` m ´ 2u, t ă i

t ´ i ` 1 P t1, . . . , lu x “ t P t1, . . . , k ` l ` m ´ 2u, i ď t ă i ` l

t ´ l ` 1 P t1, . . . , ku x “ t P t1, . . . , k ` l ` m ´ 2u, i ` l ď t ă j ` l ´ 1
t ´ j ´ l ` 2 P t1, . . . , mu x “ t P t1, . . . , k ` l ` m ´ 2u, j ` l ´ 1 ď t ă j ` l ` m ´ 1
t ´ l ´ m ` 2 P t1, . . . , ku x “ t P t1, . . . , k ` l ` m ´ 2u, j ` l ` m ´ 1 ď t

.

and let
ϕg : detpC

t1,...,k`l`m´2u
qbdetpC

InpT,Ck`l`m´1q
q

–
ÝÑ detpC

t1,...,ku
qbdetpC

t1,...,lu
qbdetpC

t1,...,mu
q

be the induced isomorphism.
Combining the alternative description of ResT,Ck`l`m´1 , the previous two

diagrams and ϕg, we see that the top-right composition of (2.3) is given by

detpC
t1,...,k`l`m´2u

q b H‚´1
pMk`l`m´1q

idbResT,Ck`l`m´1
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ detpC

t1,...,k`l`m´2u
q b detpC

InpT,Ck`l`m´1q
q b H‚´3

pMpT qq

idbΨ˚
ÝÝÝÝÑ detpC

t1,...,k`l`m´2u
q b detpC

InpT,Ck`l`m´1q
q b H‚´3

pMk`1 ˆ Ml`1 ˆ Mm`1q

idbκ
ÝÝÝÑ detpC

t1,...,k`l`m´2u
q b detpC

InpT,Ck`l`m´1q
q b H‚´1

pMk`1q b H‚´1
pMl`1q b H‚´1

pMm`1q

ϕgbid
ÝÝÝÝÑ detpC

t1,...,ku
q b detpC

t1,...,lu
q b detpC

t1,...,mu
q b H‚´1

pMk`1q b H‚´1
pMl`1q b H‚´1

pMm`1q

σ
ÝÑ detpC

t1,...,ku
q b H‚´1

pMk`1q b detpC
t1,...,lu

q b H‚´1
pMl`1q b detpC

t1,...,mu
q b H‚´1

pMm`1q (2.4)

where Ψ “ pΨCk`1,Cl`1,i ˆ idq ˝ ΨCk`1˝iCl`1,Cm`1,j`l´1 and σ is the appropri-
ate permutation of the tensor factors. A similar analysis of the left-bottom
composition of (2.3) shows that it is also given by (2.4), thus showing that
(2.3) indeed commutes.

Now let j1 P t1, . . . , lu. The sequential cocomposition axiom requires
that the diagram
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CoGravpk ` l `m´ 2q CoGravpkq b CoGravpl `m´ 1q

CoGravpk ` l ´ 1q b CoGravpmq CoGravpkq b CoGravplq b CoGravpmq

∆i

∆i`j1´1 idb∆j1

∆ibid

commutes. As for (2.3), the two compositions in this diagram can be de-
scribed in terms of a residue map associated to contracting two edges. We
omit the details of this analysis as it is completely analogous.

We can now define the gravity operad.
Definition 2.4. The gravity operad Grav is the operad in the category of
graded C-vector spaces given by the linear dual of CoGrav, i. e. its under-
lying Σ-module is given by
Gravpnq :“ pCoGravpnqq˚ “ pdetpCnq bH‚´1pMn`1qq˚ – detpCnq bH‚´1pMn`1q

and its infinitesimal composition morphisms ˝Grav
i by

Gravpkq b Gravplq – pCoGravpkq b CoGravplqq˚

∆˚
i

ÝÝÑ CoGravpk ` l ´ 1q˚ “ Gravpk ` l ´ 1q.

2.2 Koszul Duality

In this subsection, we are going the discuss the Koszul duality between
the gravity operad and the hypercommutative operad which was proven in
[GK94] and in [Get95].

We start by defining the hypercommutative operad which plays an im-
portant role in mathematical physics because it describes the algebraic struc-
ture of quantum cohomology of varieties (cf. [KM94]).
Definition 2.5. The hypercommutative operad HyCom is given by the ho-
mology of the operad pMn`1qnPN` of Fact B.10, i. e. its underlying Σ-module
is given by

HyCompnq :“ H‚pMn`1q

and its infinitesimal composition morphisms by

˝
HyCom
i : H‚pMk`1q bH‚pMl`1q

κ
ÝÑ H‚pMk`1 ˆ Ml`1q

H‚p˝iq
ÝÝÝÝÑ H‚pMk`lq.

Next, we want to analyze the cobar construction ΩGrav of Grav.
Remark 2.6. For n P N consider the double complex pKp,q

Grav,nqp,qPN under-
lying pΩGravqpnq. Then, for k P N we have

Kk`1,‚
Grav,n “ detpCnqb

¨

˚

˚

˝

à

T PTn`1
| InpT q|“k

detpCInpT qq b
â

vPNLVpT q

Gravp| Adjpvq| ´ 1q˚

˛

‹

‹

‚

(2.5)
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where the internal grading ‚ on the left hand side comes from the grading
of

Â

vPNLVpT q Gravp| Adjpvq| ´ 1q˚.
Here the Σn-action on the first tensor factor is given by permuting the

coordinates of Cn. The action on the second factor is given by acting on
trees, i. e. σ P Σn maps the summand indexed by T to the summand in-
dexed by σpT q as follows: Since T and σpT q have the same underlying
unlabeled tree, we can identify InpT q with InpσpT qq to obtain an isomor-
phism detpCInpT qq – detpCInpσpT qqq. Similarly, NLVpT q can be identified
with NLVpσpT qq, which yields an isomorphism

â

vPNLVpT q

Gravp| Adjpvq| ´ 1|q˚ –
â

v1PNLVpσpT qq

Gravp| Adjpv1q| ´ 1q˚

by mapping the factor indexed by a vertex in NLVpT q to the factor indexed
by the corresponding vertex in NLVpσpT qq.

By identifying Grav˚ with CoGrav and using the definition of CoGrav,
we can identify Kk`1,‚

Grav,n with

detpCnqb

¨

˚

˚

˝

à

T PTn`1
| InpT q|“k

detpCInpT qq b
â

vPNLVpT q

´

detpC| Adjpvq|´1q bH‚´1pM| Adjpvq|q

¯

˛

‹

‹

‚

.

(2.6)
Note that for every tree T P Tn`1, identifying the labels t1, . . . , n ` 1u

with the corresponding external edges te1, . . . , en`1u yields a bijection

t1, . . . , nu 9Y InpT q – EdgepT qzten`1u.

Now identifying t1, . . . , | Adjpvq| ´ 1u with the first | Adjpvq| ´ 1 edges of
the corolla C| Adjpvq| in the corresponding grafting while decomposing the
underlying tree of T into corollas yields another bijection

EdgepT qzten`1u –
9ď

NLVpT q

t1, . . . , | Adjpvq| ´ 1u.

Moreover, these bijections are compatible with the action of Σn. Thus, the
determinants in (2.6) can be trivialized to identify the Σn-representation
Kk`1,‚

Grav,n with
à

T PTn`1
| InpT q|“k

â

vPNLVpT q

H‚´1pM| Adjpvq|q. (2.7)

Now note that for every tree T , we have | NLVpT q| “ | InpT q| ` 1. Thus,
using the Künneth isomorphism and the product decomposition of Fact B.9,
we can further identify this with

à

T PTn`1
| InpT q|“k

H‚´1´kpMpT qq. (2.8)
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Next, we are going to identify the (external) differential dk`1 : Kk`1,‚
Grav,n Ñ

Kk`2,‚
Grav,n. Let T, T 1 P Tn`1 such that | InpT q| “ k, | InpT 1q| “ k ` 1 and

T – T 1{e. By
λT 1,T : detpCInpT qq Ñ detpCInpT 1qq

we denote the map given by wedging with the basis element of CInpT 1q which
corresponds to e P InpT 1q.

Now let v1, v2 P NLVpT 1q be the vertices adjacent to e P InpT 1q and v0 P
NLVpT q be the vertex they collapse into. Then we can identify NLVpT qztv0u

with NLVpT 1qztv1, v2u. Thus, denoting both of these sets by V , we obtain
identifications

â

vPNLVpT q

Gravp| Adjpvq| ´ 1|q
˚

–Gravp| Adjpv0q| ´ 1q
˚

b
â

vPV

Gravp| Adjpvq| ´ 1|q
˚

and
â

vPNLVpT 1q

Gravp| Adjpvq| ´ 1|q
˚

–Gravp| Adjpv1q| ´ 1q
˚

b Gravp| Adjpv2q| ´ 1q
˚

b
â

vPV

Gravp| Adjpvq| ´ 1|q
˚.

Moreover, by building T and T 1 by grafting corollas, the edge contraction
T 1 ě1 T can be identified with an edge contraction C| Adjpv1q| ˝i C| Adjpv2q| ě1
C| Adjpv0q| at some stage. Thus, we obtain a map

γT 1,T :
â

vPNLVpT q

Gravp| Adjpvq| ´ 1|q˚ Ñ
â

v1PNLVpT 1q

Gravp| Adjpv1q| ´ 1|q˚

which under the above identifications corresponds to p˝Grav
i q˚ b id.

Now, under these notations and identifications, the differential dk`1 is
given by adding up the maps iddetpCnq b λT 1,T b γT 1,T for all 1-step edge
contractions T 1 ě1 T with InpT q “ k.

When we identify Grav˚ with CoGrav as in (2.6), p˝Grav
i q˚ gets identi-

fied with ∆i. Trivializing the determinants in (2.7) gets rid of the factors
iddetpCnq b λT 1,T in each summand of the differential. Finally, identifying
Â

vPNLVpT q H
‚´1pM| Adjpvq|q with H‚´1´| InpT q|pMpT qq and utilizing the com-

patibility of residue morphisms with product decompositions as in Propo-
sition B.22, we see that in the description of (2.8) the summand of the
differential corresponding to an edge contraction T 1 ě1 T with T – T 1{e is
given by

Respeq : H‚´1´| In T |pMpT qq Ñ H‚´1´| In T 1|pMpT 1qq.

Let us now also identify the composition morphisms of ΩGrav which are
inherited from the composition morphisms of the free operad FpGrav˚r´1sq.
Let T P Tl`1, T 1 P Tm`1, i P t1, . . . , lu. Note that we can identify NLVpT ˝i

32



T 1q with NLVpT q 9Y NLVpT 1q. Now, after trivializing the determinants occur-
ring in ΩGrav as in (2.7), the composition morphism ˝ΩGrav

i on the summand
˜

â

vPNLVpT q

H‚´1pM| Adjpvq|q

¸

b

˜

â

v1PNLVpT 1q

H‚´1pM| Adjpv1q|q

¸

of K | InpT q|`1,‚
Grav,l b K

| InpT 1q|`1,‚
Grav,m is given by mapping the factor indexed by

v P NLVpT q 9Y NLVpT 1q to the factor indexed by the corresponding vertex in
NLVpT ˝i T

1q in the summand
â

vPNLVpT ˝iT 1q

H‚´1pM| Adjpvq|q

of K | InpT q|`1`| InpT 1q|`1,‚
Grav,l`m´1 “ K

| InpT ˝iT
1q|`1,‚

Grav,l`m´1 . After utilizing Künneth isomor-
phisms and product decomposition of MpT q, MpT 1q resp. MpT ˝iT

1q, we see
that in the description of (2.8), the composition morphism ˝ΩGrav

i is given
by adding up the isomorphisms

H‚´1´| InpT q|pMpT qq bH‚´1´| InpT 1q|pMpT 1qq

κ
ÝÑ H‚´2´| InpT q|´| InpT 1q|pMpT q ˆ MpT 1qq

pΨ´1
T,T 1,i

q˚

ÝÝÝÝÝÝÑ H‚´1´| InpT ˝iT
1q|pMpT ˝i T

1qq.

Now that we have an explicit description of ΩGrav, we can show that it
is quasi-isomorphic to HyCom by using the residue spectral sequence.

Theorem 2.7. There is an quasi-isomorphism ΩGrav » HyCom of differ-
ential graded operads.

Proof. Let pEp,qqp,qPN be the first page of the residue spectral sequence for
Mn`1 (cf. Fact B.24) which we consider as a double complex with zero
vertical differentials. Our previous analysis yields isomorphisms Kp`1,q

Grav,n –

Ep,q´1 for p P N, q P N` which are compatible with the differentials. Con-
sidering that K‚,0

Grav,n – K0,‚
Grav,n – 0, this yields an isomorphism

totppKp,q
Grav,nqp,qPNq‚ – totppEp,qqp,qPNq‚

of total complexes. Thus, using the exact sequences of Fact B.25 we obtain
a quasi-isomorphism

pΩGravqpnq “ totppKp,q
Grav,nqp,qPNqn´2´‚ – totppEp,qqp,qPNqn´2´‚ » Hn´2´‚pMn`1q.

Now using Poincaré duality and considering all n P N`, we get a quasi-
isomorphism ΩGrav » HyCom of Σ-modules. Since the composition mor-
phisms of ΩGrav and HyCom are both given by combining Künneth iso-
morphisms with ΨT,S,i for suitable T , S and i, this quasi-isomorphism is
compatible with the operad structures on both sides and hence yields a
quasi-isomorphism of differential graded operads.
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This result can be seen as an extension of the classical Koszul dual-
ity between commutative algebras and Lie algebras since the suboperad of
HyCom generated by HyComp2q is isomorphic to the commutative operad
and the suboperad of Grav generated by Gravp2q is isomorphic to the Lie
operad (cf. [Get95]).
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A Labeled Trees
In this appendix we fix some notations regarding labeled trees which play

a crucial role while describing operadic compositions and stratifications of
moduli spaces of genus 0 curves. A detailed account of trees and their
relation to operads can be found in [BM08, Section 1] and [LV12, Appendix
C].

Definition A.1. A tree is a connected undirected graph with no cycles.

Now let T be a tree.

Notation A.2. • By VertpT q we denote the set of vertices of T .
• For v P VertpT q, we denote by Adjpvq the set of edges which are

adjacent to v.
• Let NLVpT q denote the set of those vertices of T which are not leaves,

i. e. NLVpT q “ tv P V | Adjpvq ą 1u.
• By EdgepT q we denote the set of edges of T .

Definition A.3. • An edge e P EdgepT q is called internal if all vertices
which are adjacent to e are also adjacent to another edge. Let InpT q

denote the set of internal edges of T .
• An edge e P EdgepT q is called external if it is not internal, i. e. if one

of the vertices adjacent to e is not adjacent to any other edge. Let
ExpT q denote the set of internal edges of T .

Definition A.4. For e P EdgepT q let T {e denote the tree obtained from T
by removing the edge e and identifying the two vertices adjacent to e. We
say that T {e is obtained from T by contracting the edge e.

Definition A.5. Let n P N`. An n-tree is a tree whose external edges are
labeled with 1, . . . , n, i. e. a tree S together with an identification ExpSq –

t1, . . . , nu. Let Tn denote the set of isomorphism classes of n-trees w. r. t.
graph isomorphisms which respect the labels of the external edges.

Remark A.6. The symmetric group Σn acts on the class of n-trees by
permuting the labels. Moreover, this action is compatible with graph iso-
morphisms which preserve labels, so it descends to an action of Σn on Tn.

We will sometimes identify an n-tree with its isomorphism class or its
underlying tree, but the object we are talking about will be clear from the
context.

From now on we fix an n P N` and T, S P Tn.

Remark A.7. For an internal edge e P InpT q, the external edges of T {e can
be identified with those of T and thus inherit the labels of ExpT q. When we
consider T {e as an n-tree, we do it so using these inherited labels.
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Notation A.8. • We write S ě1 T if T is isomorphic to S{e as an
n-tree for some e P InpSq.

• We write S ě T if there is a sequence T1, . . . , Tk of n-trees with k P N`

and such that T1 “ S, Tk “ T and Ti ě1 Ti`1 for i P t1, . . . , k´1u, i. e.
if T is obtained from S via a sequence of internal edge contractions.

• For S ě T we denote by InpS, T q Ď InpSq the set of those internal
edges which are contracted to obtain T .

When we think of the pn ` 1q-st external edge of an pn ` 1q-tree as an
“output” and the remaining external edges as “inputs”, we can regard an
pn ` 1q-tree as a “composition scheme with n inputs”. We now want to
describe how these composition schemes can be “grafted”. For this we let
n,m P N`, T P Tn`1, S P Tm`1 and i P t1, . . . , nu.

Definition A.9. We define an pn`mq-tree T ˝i S as follows:
Let ei be the i-th external edge of T which connects the vertices vT , wT P

VertpT q, where wT is only adjacent to ei. Let fm`1 be the pm`1q-st external
edge of S which connects the vertices vS , wS P VertpSq, where wS is only
adjacent to fm`1. The underlying tree R of T ˝i S is the tree obtained from
the disjoint union of T and S by removing the edges ei and fm`1 along with
the vertices wT and wT , and replacing it with an (internal) edge connecting
vT and vS .

Thus, if we fix enumerations ExpT q “ te1, . . . , en`1u and ExpSq “

tf1, . . . , fm`1u given by the labels, we obtain

ExpRq “ pExpT q 9Y ExpSqqztei, fm`1u.

Now we enumerate these external edges as

e1, . . . , ei´1, f1, . . . , fm, ei`1, . . . , en`1

which yields an identification of ExpRq with t1, . . . , n`mu. We now define
T ˝i S to be R equipped with this identification.

In fact, one can build every tree from simple pieces via grafting:

Definition A.10. We define the n-corolla Cn to be the unique n-tree (iso-
morphism class) with no internal edges.

Remark A.11. Every labeled tree can be realized via a sequence of graft-
ings of corolla up to a permutation of its labels, i. e. for each tree R P Tn

there are sequences pn0, . . . , nkq, pi1, . . . , ikq and a permutation σ P Σn such
that R is isomorphic to σpCn0 ˝i1 Cn1 ˝i2 ¨ ¨ ¨ ˝ik

Cnk
q as a labeled tree.

Moreover, grafting is compatible with certain permutations of labels.
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Notation A.12. • Let θn,i : Σn ãÝÑ Σn`m´1 be given by letting σ P Σn

act on t1, . . . , n ` m ´ 1u by considering the block ti, . . . , i ` m ´ 1u

as one element and permuting the resulting pi ´ 1q ` 1 ` pn ´ iq “ n
elements.

• Let ϑm,i : Σm ãÝÑ Σn`m´1 be defined by letting ρ P Σm act on the block
ti, . . . , i`m´ 1u Ď t1, . . . , n`m´ 1u.

Remark A.13. We endow Tn`1 ˆTm`1 with a Σn-action by permuting the
first n labels in the first coordinate and a Σm-action by permuting the first
m labels in the second coordinate. We endow Tn`m with a Σn- resp. Σm

action by acting on the first n`m´ 1 coordinates via θn,i resp. ϑm,i.
With respect to these actions, the map

˝i : Tn`1 ˆ Tm`1 Ñ Tn`m

is Σn- and Σm-equivariant.
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B Moduli Spaces of Marked Genus 0 Curves
In this appendix we review some facts related to moduli spaces of genus

0 curves which are used throughout Section 2 while dealing with the gravity
operad. Many of these results were originally proven in the context of alge-
braic geometry, but with the exception the terminology “curve” (instead of
“Riemannian surface”), we use the language of complex geometry which is
a better fit for our considerations of residue morphisms.

B.1 Moduli Spaces

We start by defining the geometric objects we are concerned with. For
this, we fix a natural number n ě 3.

Definition B.1. The moduli space of smooth genus 0 curves with n marked
points is

Mn :“
␣

pp1, . . . , pnq P pCP 1qn | pi ‰ pj for i ‰ j
(

äPGL2pCq,

where PGL2pCq acts diagonally.

Remark B.2. Since the action of PGL2pCq on CP 1 is strictly 3-transitive,
moving the last three points to 0, 1 and 8 yields an isomorphism

Mn – tpz1, . . . , zn´3q P pCz t0, 1uqn | zi ‰ zj for i ‰ ju .

In particular, Mn is an pn´ 3q-dimensional affine variety.

The following convention helps us deal with some degenerate cases.

Convention B.3. We set M2 :“ H.

Remark B.4. Σn acts on Mn by permuting the marked points. Moreover,
there is a unique action of Σ2 on M2 “ H (which is necessarily trivial).

Next, we want to describe a compactification of Mn which goes back to
[Knu83a] and [Knu83b]. Another approach to this compactification via a
sequence of blow-ups can be found in [Kee92]. In the following we will need
some concepts related to trees which are dealt with in Appendix A.

Fact B.5 ([Knu83a, Theorem 2.7], [Knu83b, Theorem 6.1]). Mn admits a
compactification Mn which classifies n-marked stable curves of genus 0. Mn

has the following properties:
• Mn is a smooth projective variety.
• Mn admits a stratification

Mn “
9ď

T PTn

MpT q (B.1)

given by dual graphs of stable curves such that MpT 1q Ď MpT q if and
only if T 1 ě T .
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• Mn can be identified with the stratum MpCnq.
• For T P Tn, MpT q has codimension | InpT q| in Mn.

Notation B.6. For an n-tree T let MpT q denote the closure MpT q of the
stratum MpT q Ď Mn in Mn.

Convention B.7. We set M2 :“ H.

Remark B.8. The Σn-action on Mn extends to Mn in a way that is com-
patible with the stratification of Fact B.5, i. e. maps strata into strata. The
induced action on the set of strata coincides with the one induced by the
Σn-action on Tn given by permuting the labels of external edges (cf. Re-
mark A.6).

Similarly, the (trivial) Σ2-action on M2 induces a (trivial) Σ2-action
M2 “ H.

One can in fact describe the strata in (B.1) more explicitly.

Fact B.9 ([Knu83a, Theorem 3.7]). Let T P Tk`1, S P Tl`1, T 1 ě T and
S1 ě S.

Then grafting of stable curves induces an isomorphism

ΨT,S,i : MpT q ˆ MpSq
–
ÝÑ MpT ˝i Sq

which is compatible with the stratification in (B.1) in the sense that it re-
stricts to an isomorphism between MpT 1qˆMpS1q and MpT 1 ˝iS

1q. By abuse
of notation, we will denote the restriction of ΨT,S,i to MpT q ˆMpSq also by
ΨT,S,i.

Moreover, the restriction of ΨT,S,i to MpT 1q ˆ MpS1q coincides with
ΨT 1,S1,i.

In particular, for every tree T P Tn, decomposing a suitable relabeling
of T into corollas by representing each internal edge as a grafting (cf. Re-
mark A.11) yields isomorphisms

MpT q –
ź

vPNLVpT q

M| Adjpvq|.

and
MpT q –

ź

vPNLVpT q

M| Adjpvq|.

Different orderings of InpT q yield product decompositions which differ from
each other by a permutation of their factors.

In fact, these product decompositions enjoy certain compatibility prop-
erties with the action of the symmetric group which can be compactly for-
mulated as an operad structure.
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Fact B.10 ([GK94, 1.4]). The isomorphisms pΨT,S,iqT,S,i of Fact B.9 can be
chosen in a way that the Σ-module pMn`1qnPN` in the category of varieties
over C, where Σn acts on Mn`1 by permuting the first n coordinates, can be
endowed with the structure of an operad via the infinitesimal compositions
maps

˝i : Mk`1 ˆ Ml`1
ΨCk`1,Cl`1,i

ÝÝÝÝÝÝÝÝÑ MpCk`1 ˝i Cl`1q Ď Mk`l`1

for k, l P N`, 1 ď i ď k.

One can also describe the local picture of the stratification which will
turn out to be given by the following standard stratification.

Construction B.11. Let k, l P N with l ď k and let D :“ tpz1, . . . , zkq P

Ck | z1 ¨ . . . ¨ zl “ 0u. This datum induces the standard stratification of Ck

with boundary D given by
9ď

IĎt1,...,lu

XpIq

where

XpIq :“
!

pz1, . . . , zkq P Ck | zi “ 0 for i P I, zj ‰ 0 for j P t1, . . . , luzI
)

with
XpIq “

!

pz1, . . . , zkq P Ck | zi “ 0 for i P I
)

and XpI 1q Ď XpIq if and only if I 1 Ě I.

Fact B.12 ([Knu83a, Theorem 2.7]). Let T P Tn, x P MpT q. Let S P Tn be
the unique n-tree such that x P MpSq. Then S ě T , so T is obtained from
S by contracting some edges e1, . . . , el. For I Ď t1, . . . , lu let TI the n-tree
obtained from S by contracting the edges ei with i P t1, . . . , luzI.

Then there is a chart of MpT q centered at x such that on that chart, the
stratification of MpT q induced by (B.1) coincides with the standard stratifi-
cation of Construction B.11 in the sense that MpTIq corresponds to XpIq.

In particular, BMpT q :“ MpT qzMpT q is a normal crossing divisor in
MpT q with irreducible components tMpT 1q | T 1 ě1 T u.

B.2 Logarithmic Forms and Residue Morphisms

Next, we fix an n-tree T P Tn and want to describe differential forms
on MpT q with logarithmic poles along BMpT q resp. corresponding residue
maps which play a crucial role in the construction of the gravity operad.
A more detailed treatment of these concepts for general normal crossing
divisors with smooth components can be found in [PS08, Chapter 4].
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Definition B.13. We define a complex of sheaves on MpT q, the logarithmic
de Rham complex

Ω‚

MpT q
plog BMpT qq

of pMpT q, BpMpT qq by describing its sections on charts as in Fact B.12 where
the stratification is given by the standard stratification of Construction B.11.

Note that in such charts, the boundary BMpT q corresponds to tpz1, . . . , zkq P

Ck | z1 ¨ ¨ ¨ ¨ ¨ zl “ 0u. Now the sections of Ω‚

MpT q
plog BMpT qq on such a chart

are generated by forms of the form

dzi1

zi1

^ ¨ ¨ ¨ ^
dzim

zim

^ η (B.2)

where ti1, . . . , imu Ď t1, . . . lu and η is a holomorphic form on MpT q.

Remark B.14. The restriction of a differential form on MpT q which is
locally of the form (B.2) to MpT q is holomorphic.

Thus, letting j : MpT q ãÝÑ MpT q be the inclusion, we obtain a restriction
morphism

Ω‚

MpT q
plog BMpT qq Ñ j˚Ω‚

MpT q.

Fact B.15 ([PS08, Proposition 4.3]). The restriction morphism of Remark B.14
is a quasi-isomorphism and thus induces an isomorphism

HkpMpT q; Ω‚

MpT q
plog BMpT qqq – HkpMpT q; j˚ΩMpT qq – HkpMpT qq

for all k P N.

Now we fix S P Tn, S ě T and want to define the residue of a logarithmic
form on pMpT q, BpMpT qq along S. For this, we first choose an enumeration
α :“ pe1, . . . , emq of InpS, T q.

Construction B.16. Let x P MpSq. Let Ti denote the n-tree obtained
from S by contracting all the edges ej with j P t1, . . . ,muztiu. We say
that a chart centered at x is compatible with α if the stratification of MpT q

corresponds to the standard stratification of Construction B.11 on that chart
and under this correspondence, MpTiq, i P t1, . . .mu, corresponds to the
hyperplane tpz1, . . . , zkq P Ck | zi “ 0u. Note that compatible charts always
exist by Fact B.12 and under a compatible chart, MpSq corresponds to
H :“ tpz1, . . . , zkq P Ck | zi “ 0 for i P t1, . . . ,muu.

Using the local description of Definition B.13, we can write the restriction
ω of a homogeneous form in Ωp

MpT q
plog BMpT qq to a compatible chart as

ω “
dz1
z1

^ ¨ ¨ ¨ ^
dzm

zm
^ ηω ` η1

ω (B.3)
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where ηω is not divisible by any of dz1
z1

, . . . , dzm
zm

and η1
ω is not divisible by

dz1
z1

^ ¨ ¨ ¨ ^ dzm
zm

. Now we set Resα
S,T pωq “ ηω|H .

This assignment is compatible with chart transitions as long as the charts
are compatible with α. Further note that Resα

S,T pωq is a logarithmic form
on pMpSq, BMpSqq. Thus, letting jS,T : MpSq ãÝÑ MpT q be the inclusion, we
obtain a morphism

Resα
S,T : Ωp

MpT q
plog BMpT qq Ñ pjS,T q˚Ωp´m

MpSq
plog BMpSqq

which we call residue morphism with respect to α.

Remark B.17. The Leibniz rule yields

Resα
S,T ˝dΩ‚

MpT q
plog BMpT qq

“ p´1qm ¨ d
pjS,T q˚Ω‚

MpSq
plog BMpSqq

˝ Resα
S,T .

Thus, passing to (hyper)cohomology and using Fact B.15, we obtain
residue maps

H‚pMpT qq Ñ H‚´mpMpSqq

w. r. t. α which we also denote by Resα
S,T .

Resα
S,T does indeed depend on the choice of an enumeration α of InpS, T q:

Remark B.18. Let β “ pei1 , . . . eimq be another enumeration of InpS, T q

and let σα,β P Σm denote the permutation mapping j P t1, . . . ,mu to ij .
Then, for a local section ω as in (B.3) we have

ω “
dz1
z1

^ ¨ ¨ ¨ ^
dzm

zm
^ ηω ` η1

ω

“
dzi1

zi1

^ ¨ ¨ ¨ ^
dzim

zim

^ psgnpσα,βq ¨ ηωq ` η2
ω

where η2
ω is not divisible by dzi1

zi1
^ ¨ ¨ ¨ ^

dzim
zim

. As the first term is used to
compute Resα

S,T and the second term is used to compute Resβ
S,T , we obtain

Resβ
S,T “ sgnpσα,βq ¨ Resα

S,T .

We can, however, get rid of these sign ambiguities by “twisting” by a
sign representation:

Remark B.19. Let β “ pei1 , . . . eimq be another enumeration of InpS, T q

and σα,β as in Remark B.18. Then, for c P H‚pMpT qq we have the equality

pei1 ^ . . .^ eimq b Resβ
S,T pcq

“psgnpσα,βq ¨ pe1 ^ . . .^ emqq b psgnpσα,βq ¨ Resα
S,T pcqq

“pe1 ^ . . .^ emq b Resα
S,T pcq

in detpCInpS,T qq bH‚´mpMpSqq.
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Definition B.20. Define the (absolute) residue morphism via

ResS,T : H‚pMpT qq Ñ detpCInpS,T qq bH‚´| InpS,T q|pMpSqq

c ÞÑ pe1 ^ . . .^ emq b Resα
S,T pcq.

By Remark B.19, this definition does not depend on the choice of the enu-
meration α.

B.3 Properties of Residue Morphisms

Now we observe that absolute residue maps satisfy some compatibility
relations with other structures mentioned above. In Subsection 2.1, these
will be crucial in proving the cooperad axioms for the gravity cooperad.

Proposition B.21 (compatibility with the group action). Assume that T
has a single internal edge e, i. e. T ě1 Cn. Let σ P Σn. Then the action of
σ on Mn takes the stratum MpT q to the stratum MpσpT qq, where σpT q is
the image of T under the action of σ on Tn given by permuting the labels
(cf. Remark A.6). In particular, we have an isomorphism σ˚ : MpT q –

MpσpT qq. Moreover, since the underlying trees of T and σpT q coincide, we
can identify InpσpT qq with teu “ InpT q.

With these notations, we have a commutative diagram

H‚pMnq H‚pMnq

detpCteuq bH‚´1pMpσpT qqq detpCteuq bH‚´1pMpT qq

σ˚

ResσpT q,Cn ResT,Cn

idbσ˚

.

Proof. First we note that since σ : Mn Ñ Mn maps strata to strata, pulling
back along σ yields a morphism

σ˚ : pjσpSq,Cn
q˚Ω‚

MpσpSqq
plog BMpσpSqqq Ñ pjS,Cnq˚Ω‚

MpSq
plog BMpSqq

for all S ě Tn which induces σ˚ : H‚pMpσpSqqq Ñ H‚pMpSqq on cohomol-
ogy.

Now we consider peq both as an enumeration of InpT q and as an enumer-
ation of InpσpT qq. After trivializing detpCteuq via peq, we only need to show
that on the level of logarithmic forms, the diagram

Ω‚

Mn
plog BMnq Ω‚

Mn
plog BMnq

pjσpT q,Cn
q˚Ω‚´1

MpσpT qq
plog BMpσpT qqq pjT,Cnq˚Ω‚´1

MpT q
plog BMpT qq

σ˚

Respeq

σpT q,Cn
Respeq

T,Cn

σ˚

commutes.
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Note that for x P MpT q, if γ is a chart centered at x compatible with
peq as an enumeration of InpT q, then γ ˝ σ´1 is a chart centered at σpxq P

MpσpT qq compatible with peq as an enumeration of InpσpT qq. Thus, since
residues on the both sides of the above diagram are locally given by “omitting
the first coordinate” in a compatible chart, the two compositions coincide.

Proposition B.22 (compatibility with product decompositions). Let T 1 P

Tn, m P N`, R,R1 P Tm such that T 1 ě T and R1 ě R. Further let
i P t1, . . . , n ´ 1u. In this situation we have T 1 ˝i R

1 ě T ˝i R and an
identification InpT 1 ˝i R

1, T ˝i Rq – InpT 1, T q 9Y InpR1, Rq which induces an
isomorphism

ϕT 1,T ;R1,R : detpCInpT ˝iR
1,T ˝iRqq Ñ detpCInpT 1,T 1qq b detpCInpR1,Rqq.

With these notations, the diagram

H‚pMpT 1 ˝i Rqq detpCInpT 1˝iR1,T ˝iRqq b H‚´| InpT 1˝iR1,T ˝iRq|pMpT 1 ˝i R1qq

H‚pMpT q ˆ MpRqq detpCInpT 1˝iR1,T ˝iRqq b H‚´| InpT 1˝iR1,T ˝iRq|pMpT 1q ˆ MpR1qq

detpCInpT 1,T qq b detpCInpR1,Rqq b H‚´| InpT 1,T q|pMpT 1qq b H‚´| InpR1,Rq|pMpR1qq

H‚pMpT qq b H‚pMpRqq detpCInpT 1,T qq b H‚´| InpT 1,T q|pMpT 1qq b detpCInpR1,Rqq b H‚´| InpR1,Rq|pMpR1qq

ResT ˝iR1,T ˝iR

Ψ˚
T,R,i

idbΨ˚
T 1,R1,i

κ

ϕT 1,T ;R1,Rbκ

idbτbid

ResT 1,T b ResR1,R

commutes.

Proof. Let α1 “ pe1, . . . , ekq be an enumeration of InpT 1, T q and α2 “

pf1, . . . , flq an enumeration of InpR1, Rq. Then we have an enumeration
pe1, . . . , ek, f1, . . . , flq of InpT 1, T q 9Y InpR1, Rq which induces an enumeration
α “ pg1, . . . , gk`lq of InpT 1 ˝i R

1, T ˝i Rq such that

ϕT 1,T ;R1,Rpg1 ^ . . .^ gk`lq “ pe1 ^ . . .^ ekq b pf1 ^ . . .^ flq.

Now we want to analyze the situation on the level of logarithmic forms.
For MpT q ˆ MpRq resp. MpT 1q ˆ MpR1q we consider logarithmic forms
Ω‚

MpT qˆMpRq
plog BpMpT qˆMpRqqq resp. Ω‚

MpT 1qˆMpR1q
plog BpMpT 1qˆMpR1qqq

whose definition is analogous to the logarithmic forms of Definition B.13 and
uses the induced stratification on the product spaces (cf. [PS08, Chapter 4]).
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Moreover, let px1, x2q P MpT q ˆMpRq and γ1 resp. γ2 a chart of MpT q resp.
MpRq centered at x1 resp. x2 that is compatible with α1 resp. α2.

Next, let ω1 resp. ω2 be a local section of pr˚
1Ωu

MpT q
plog BMpT qq resp.

pr˚
2Ωv

MpRq
plog BMpRqq which is given by dz1

z1
^ . . .^ dzk

zk
^ η resp. dw1

w1
^ . . .^

dwl
wl

^ µ in the coordinates of γ1 resp. γ2. Then, using the trivializations of
determinants induced by the above mentioned enumerations and taking the
sign introduced by the braiding τ into account, it is enough to show that
for ω1 b ω2 the compositions in the diagram

pΨ´1
T,R,iq

˚Ω‚

MpT ˝iRq
plog BMpT ˝i Rqq pΨ´1

T,R,iq
˚
´

pjT 1˝iR1,T ˝iRq˚Ω‚´| InpT 1˝iR1,T ˝iRq|

MpT 1˝iR1q
plog BMpT 1 ˝i R1qq

¯

Ω‚

MpT qˆMpRq
plog BpMpT q ˆ MpRqqq pjT 1,T ˆ jR1,Rq˚Ω‚´| InpT 1˝iR1,T ˝iRq|

MpT 1qˆMpR1q
plog BpMpT 1q ˆ MpR1qqq

pr˚
1 Ω‚

MpT q
plog BMpT qq b pr˚

2 Ω‚

MpRq
plog BMpRqq

pr˚
1

´

pjT 1,T q˚Ω‚´| InpT 1,T q|

MpT 1q
plog BMpT 1qq

¯

b

pr˚
2

´

pjR1,Rq˚Ω‚´| InpR1,Rq|

MpR1q
plog BMpR1qq

¯

pΨ´1
T,R,i

q˚pResα
T ˝iR1,T ˝iR

q

pΨ´1
T,R,i

q˚ pΨ´1
T 1,R1,i

q˚

κ̃

pr˚
1 pResα1

T 1,T
qbpr˚

2 pResα2
R1,R

q

κ̃

coincide up to the sign p´1qpu´kq¨l where κ̃ denotes the chain-level Künneth
morphism given on the level of differential forms by ζ b ξ ÞÑ ζ ^ ξ.

Note that the bottom-right composition maps ω1bω2 to pΨ´1
T,R,iq

˚pη^µq.
Now, in order to make the chart pγ1 ˆ γ2q ˝ Ψ´1

T,R,i compatible with α, one
has to permute the last u ´ k coordinates of γ1 past the first l coordinates
of γ2, which introduces the sign p´1qpu´kq¨l. Then pΨ´1

T,R,iq
˚pResα

T ˝iR1,T ˝iR
q

“removes the coordinates z1, . . . , zk, w1, . . . , wl”, so that the left-top compo-
sition maps ω1 b ω2 to p´1qpu´kq¨lpΨ´1

T,R,iq
˚pη ^ µq which has the required

sign.

Proposition B.23 (compatibility with sequences of edge contractions). Let
R ě S ě T be sequence of internal edge contractions. Then the decomposi-
tion InpR, T q “ InpS, T q 9Y InpR,Sq yields an isomorphism

ϕR,S,T : detpCInpS,T qq b detpCInpR,Sqq
–
ÝÑ detpCInpR,T qq
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such that the composition

H‚pMpT qq

ResS,T
ÝÝÝÝÑ detpCInpS,T qq bH‚´| InpS,T q|pMpSqq

idbResR,S
ÝÝÝÝÝÝÑ detpCInpS,T qq b detpCInpR,Sqq bH‚´| InpS,T q|´| InpR,Sq|pMpRqq

ϕR,S,T bid
ÝÝÝÝÝÝÑ detpCInpR,T qq bH‚´| InpR,T q|pMpRqq

is equal to ResR,T .
Proof. Let α1 “ pe1, . . . , ekq be an enumeration of InpS, T q and α2 “ pf1, . . . , flq

an enumeration of InpR,Sq, so that α “ pe1, . . . , ek, f1, . . . , flq is an enumer-
ation of InpR, T q.

Then Resα2
R,S ˝ Resα1

S,T “ Resα
R,T since on the level of logarithmic forms,

both sides are locally given by “omitting first k ` l coordinates” on charts
compatible with α.

Moreover, since

ϕR,S,T ppe1 ^ . . .^ ekq b pf1 ^ . . .^ flqq “ e1 ^ . . .^ ek ^ f1 ^ . . .^ fl,

this identity is compatible with the signs and thus yields the desired identity
for the absolute residue morphisms.

B.4 The Residue Spectral Sequence

We are now going to present a spectral sequence which relates the coho-
mology of Mn with the cohomology of Mn. Similar spectral sequences were
used in [GK94] and [Get95], and more recently in [AP15] and [DV15] to
establish Koszul duality relations for various versions of the gravity operad.
The variant we use is from [DV15].
Fact B.24 ([DV15, Proposition 3.6]). Consider the double complex of sheaves
on Mn given by

Kp,q :“
à

T PTn
| InpT q|“p

pjT q˚Ωq´p

MpT q
plog BMpT qq

where the vertical differential is given by the usual de Rham differential and
the horizontal differential is given by the sum of the residue morphisms

pjT q˚

´

Respeq

T 1,T

¯

: pjT q˚Ωq´p

MpT q
plog BMpT qq Ñ pjT 1q˚Ωq´pp`1q

MpT 1q
plog BMpT 1qq

for all T 1 ě1 T such that T – T 1{e.
This double complex induces a spectral sequence

Ep,q
1 “

à

T PTn
| InpT q|“p

Hq´ppMpT qq ñ Hp`qpMnq

of representations of Σn computing the cohomology of Mn.
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In fact, using additional information about Hodge structures, one can
show that this spectral sequence collapses on the E2-page and describe its
E8-page.

Fact B.25 ([DV15, Remark 3.12], [Get95, Section 3]). The residue spec-
tral sequence of Fact B.24 collapses on the second page and the E8-page is
concentrated on the line p “ q.

In particular, H‚pMnq is concentrated in even degrees and for q P N, the
transition from the E1-page to the E2 “ E8-page yields an exact sequence

0 Ñ Hq
pMnq

d
0,q
1

ÝÝÑ
à

T PTn
| InpT q|“1

Hq´1
pMpT qq

d
1,q
1

ÝÝÑ . . .
d

q´1,q
1

ÝÝÝÝÑ
à

T PTn
| InpT q|“q

H0
pMpT qq Ñ H2q

pMnq Ñ 0.

This exact sequence is used in Subsection 2.2 to establish the Koszul
duality between the gravity operad and the hypercommutative operad.
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