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This document contains two examples of simplicial homology computa-
tions. They were originally written as model solutions for some exercises in
a course on algebraic topology given by Kathryn Hess and showcase some
techniques (such as the Mayer–Vietoris sequence and excision) that were
introduced in the class around the time those exercises appeared.
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1 The real projective plane
In this section, we will find a(n abstract) simplicial complex K whose realization is

homeomorphic to the real projective plane RP 2 and compute its simplicial homology
using a Mayer–Vietoris sequence.
In the following, we freely use some usual conventions and abuses of notation such as

representing abstract simplicial complexes and their labelings with pictures, using the
alphabetical ordering of the vertices for homology calculations, writing v instead of tvu
for a 0-simplex etc.
Fixing possible sign issues is left as an exercise to the reader.
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The complex and the decomposition
Here is a possible way to realize RP 2 as a simplicial complex:1
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To use the Mayer–Vietoris sequence, we want to write K as the union of two subcom-
plexes whose homology (and that of their intersection) we know well (or can compute
easily). One of the many possibilities to do this is as follows:
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First subcomplex
Note that K1 is a representation of the Möbius strip. You may have seen that its

homology is isomorphic to that of B∆2, but we will compute it to have another demon-
stration of how to use the Mayer–Vietoris sequence and because it will be important to
know an explicit generator of H1pK1q – H1pB∆2q – Z.
Here is the decomposition of K1 that we will use to compute its homology:
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1There is actually a simplicial complex with only ten 2-simplicies that realizes RP 2, but we’ll stick to
the one above because it’s somewhat more straightforward to come up with: One can obtain RP 2

from a square by identifying “antipodal” points of its boundary, and inspired by how one realizes
the cylinder as a simplicial complex, one can subdivide that square into three “layers” vertically and
horizontally to obtain the simplicial complex above.
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Note that K1,1 is the union of two copies of ∆2 whose intersection is isomorphic to
∆1. Thus it is acyclic as the union of two acyclic subcomplexes whose intersection is
also acyclic.
Doing the identifications given by the labeling, we see that K1,2 can be written as the

union of two copies of K1,1 whose intersection is isomorphic to ∆1:

K1,2 :

i h

f e

g j

.

Hence K1,2 is also acyclic.
The intersectionK1,1XK1,2 consists of two disjoint copies of ∆1 (namely those spanned

by tg, ju and th, iu). Thus HnpK1,1XK1,2q – 0 for n ą 0 and H0pK1,1XK1,2q – Z
2 is a

free abelian group on the generators rgs and rhs.
We can now compute the homology of K1. First we note that K1 is connected, so

H0pK1q – Z (which can also be seen from the Mayer–Vietoris sequence).
To calculate H1pK1q, we have a look at the corresponding segment of the Mayer–

Vietoris sequence:

0 – H1pK1,1q ‘H1pK1,2q Ñ H1pK1q
B1
ÝÑ H0pK1,1 XK1,2q

φ0
ÝÑ H0pK1,1q ‘H0pK1,2q.

This means that B1 is injective and thus an isomorphism onto its image im B1 “ kerφ0.
To determine kerφ0, we note that rhs “ rgs in H0pK1,1q and H0pK1,2q, so

φ0pmrgs ` nrhsq “ ppm` nqrgs,´pm` nqrgsq P H0pK1,1q ‘H0pK1,2q

which is zero if and only if m “ ´n. Hence we have

kerφ0 “ t´krgs ` krhs | k P Zu “ Z ¨ prhs ´ rgsq Ď H0pK1,1 XK1,2q “ Z ¨ rgs ‘ Z ¨ rhs.

Thus H1pK1q – Z and the preimage of rhs ´ rgs under B1 is a generator.
Intuitively speaking, this preimage is represented by two sequences of edges connecting

g and h in K1,1 resp. K1,2 such that their union is a cycle in K1. An example of this
would be taking ptg, huq in K1,1 and ptf, gu, te, fu, te, huq in K1,2, which would yield the
generator rtf, gu ` tg, hu ´ te, hu ` te, fus P H1pK1q after choosing appropriate signs.
In order to be more precise about this, we have to recall how B1 is defined using the

following diagram:

0 C1pK1,1 XK1,2q C1pK1,1q ‘ C1pK1,2q C1pK1q 0

0 C0pK1,1 XK1,2q C0pK1,1q ‘ C0pK1,2q C0pK1q 0

ϕ1

d
K1,1XK1,2
1

%1

d
K1,1
1 ‘d

K1,2
1 d

K1
1

ϕ0 %0

.
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Namely, given a 1-cycle η in K1, one lifts η along %1, checks that the image of the lift
under dK1,1

1 ‘ d
K1,2
1 comes from a 0-cycle η1 in C0pK1,1 X K1,2q and sets B1prηsq to be

rη1s P H0pK1,1 XK1,2q.
Hence, if we can find α P C1pK1,2q and β P C1pK1,2q such that pdK1,1

1 pαq, d
K1,2
1 pβqq “

ph ´ g, g ´ hq “ ϕ0ph ´ gq and γ :“ %1pα, βq “ α ` β P ker dK1
1 , we will have B1prγsq “

rhs ´ rgs, which means that rγs is a generator of H1pK1q.
To realize the example from above, we set α “ tg, hu and β “ ´te, hu`te, fu`tf, gu.

Then we indeed have dK1,1
1 pαq “ h´g and dK1,2

1 pβq “ e´h`f´e`g´f “ g´h. Moreover,
a straightforward calculation shows that γ :“ %1pα, βq “ tf, gu ` tg, hu ´ te, hu ` te, fu
is a cycle, so rγs “ rtf, gu ` tg, hu ´ te, hu ` te, fus is indeed a generator of H1pK1q.
Next, we see that H2pK1q is “squeezed between trivial groups” in the MV sequence:

0 – H2pK1,1q ‘H2pK1,2q Ñ H2pK1q Ñ H1pK1,1 XK1,2q – 0,

so it also is trivial. Moreover, HnpK1q – 0 for n ą 2 as K1 is a 2-dimensional complex.
All in all, we have calculated that

HnpK1q –

#

Z n P t0, 1u
0 otherwise

where H1pK1q “ Z ¨ rtf, gu ` tg, hu ´ te, hu ` te, fus.

Second subcomplex
After doing the identifications given by the labeling, K2 looks as follows:

K2 :

f

a

b

c

d

e

i

j

g

h

.

The picture makes it evident that |K2| is homeomorphic to a disk and we will show that
K2 is indeed acyclic by decomposing it into two acyclic subcomplexes whose intersection
is acyclic.
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First we note that the simplicial complex

L :
u

v

w

is acyclic because it is the union of two copies of ∆1 whose intersection is isomorphic to
∆0.
Now we can iteratively build K2 by starting with a complex isomorphic to the acyclic

complex K1,1 from above and in each step adding a copy of K1,1 in a way that the
intersection is isomorphic to ∆1 or L (thus also acyclic), which means that each complex
in the sequence is acyclic:

    .

The intersection and the final MV sequence
The intersection K1 XK2 is given by

K1 XK2 :

f e

g

h i

j

e f

which represents a hexagon with vertices f , g, h, e, j, i after doing the identifications
indicated by the labeling.
We refrain from computing its homology here which can be done directly or using a

Mayer–Vietoris sequence. The result is

HnpK1 XK2q –

#

Z n P t0, 1u
0 otherwise

where H1pK1 X K2q is generated by the class of θ :“ tf, gu ` tg, hu ´ te, hu ` te, ju ´
ti, ju ´ tf, iu, i. e. a generating cycle is given by “going around the circle once”.
Now we start computing the homology of K. Since K is connected, H0pKq – Z.
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To compute H1pKq, we will analyze the following segment of the Mayer–Vietoris
sequence:

H1pK1 XK2q
φ1
ÝÑ H1pK1q ‘H1pK2q

ρ1
ÝÑ H1pKq

B1
ÝÑ H0pK1 XK2q

φ0
ÝÑ H0pK1q ‘H0pK2q.

Using the homology class of g as a generator of 0-th homology groups of K1, K2 and
K1 XK2, we see that

Z – H0pK1 XK2q
φ0
ÝÑ H0pK1q ‘H0pK2q – Z

2

mrgs ÞÑ pmrgs,´mrgsq

is injective, i. e. kerφ0 “ 0.
Hence, by exactness, im B1 “ kerφ0 “ 0. This yields, again by exactness, H1pKq “

ker B1 “ im ρ1. Using that ker ρ1 “ imφ1, this means that H1pKq – cokerφ1 by the first
isomorphism theorem.
Now φ1 is a homomorphism

Z – H1pK1 XK2q Ñ H1pK1q ‘H1pK2q – H1pK1q ‘ 0 – Z,

so it maps the generator rθs “ rtf, gu`tg, hu´te, hu`te, ju´ti, ju´tf, ius ofH1pK1XK2q

to a multiple k ¨ rγs of the generator rγs “ rtf, gu ` tg, hu ´ te, hu ` te, fus of H1pK1q

and thus its image is k ¨ Z ¨ rγs, which means that its cokernel is isomorphic to Z{kZ.
Intuitively speaking, one can say that “the cycle tf, gu`tg, hu´te, hu`te, ju´ti, ju´

tf, iu goes around the Möbius strip K1 twice”, so k must be 2. This can be made precise
as follows:
Let γ1 :“ te, ju´ti, ju´tf, iu´te, fu P C1pK1XK2q Ď C1pK1q. Note that γ1 is a cycle

in K1 and that θ “ γ ` γ1, so rθs “ rγs ` rγ1s in H1pK1q. Therefore it is enough to show
that rγs “ rγ1s, i. e. rγ ´ γ1s “ 0, in H1pK1q. Also this has a geometric interpretation:
In the representation of K1 as a rectangle whose top and bottom edge are appropriately
identified, γ ´ γ1 corresponds to the boundary of the rectangle, so it is the image of an
appropriate sum of the 2-simplices in the rectangle under dK1

2 :

“dK1
2 pte, f, gu ` te, g, ju ` tg, h, ju ` th, i, ju ´ te, h, iu ` te, f, iuq

“ptf, gu ´ te, gu ` te, fuq ` ptg, ju ´ te, ju ` te, guq ` pth, ju ´ tg, ju ` tg, huq`

pti, ju ´ th, ju ` th, iuq ´ pth, iu ´ te, iu ` te, huq ` ptf, iu ´ te, iu ` te, fuq

“ptf, gu ` te, fuq ` p´te, juq ` ptg, huq ` pti, juq ´ pte, huq ` ptf, iu ` te, fuq

“ptf, gu ` tg, hu ´ te, hu ` te, fuq ` p´te, ju ` ti, ju ` tf, iu ` te, fuq

“γ ´ γ1.

Hence φ1prθsq indeed corresponds to rγ1s ` rγs “ rγs ` rγs “ 2rγs, so H1pKq – Z{2Z.
Note that the calculation above also shows that kerφ1 “ 0 as φ1 is essentially given

by multiplication by 2. Hence, looking at the exact sequence

0 – H2pK1q ‘H1pK2q
ρ2
ÝÑ H2pKq

B2
ÝÑ H1pK1 XK2q

φ1
ÝÑ H1pK1q ‘H1pK2q,
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we see that 0 “ kerφ1 “ im B2, so H2pKq “ ker B2 “ im ρ2 “ 0.
Moreover, as K is a 2-dimensional simplicial complex, we have HnpKq – 0 for all

n ą 2.
All in all, we obtain

HnpKq –

$

’

&

’

%

Z n “ 0
Z{2Z n “ 1
0 otherwise

.

2 The Klein bottle
In this second section, we will describe another simplicial complexK whose realization

is homeomorphic to the Klein bottle, and compute its homology using the (simplicial)
excision theorem and the long exact sequence for a couple.
This section is somewhat more sketchy than the first one. As before, there may still

be some sign or labeling mistakes left in the text.

The complex and the decomposition
Here is a possible way to realize the Klein bottle as a simplicial complex:

K :

a

b

c

a d e a

c

b

ade

f

g
h

i

.

The idea of our computation is finding a decomposition K “ K1 YK2 into subcom-
plexes such that we can understand H‚pK2q and H‚pK,K2q (where the latter can be
identified with H‚pK1, K1 XK2q via excision) well and deduce what H‚pKq must be by
analyzing the long exact sequence for the couple pK,K2q.
To this end, we let

K1 :“
f

g h

i
and K2 :“

a

b

c

a d e a

c

b

ade

f

g h

i
.
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Note that we have

K1 XK2 “

f

g h

i
.

Homology of the subcomplex
Intuitively speaking, “K2 is just a thickened version of two loops ta, buYta, cuYta, cu

and ta, euYtd, euYta, du joined at a”, so we can expect to have H1pK2q – Z, H1pK2q –

Z2 and HnpK2q – 0 for n R t0, 1u.
To be more precise, we can use a Mayer–Vietoris sequence to compute H‚pK2q. We

start with a decomposition
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Note that

K2,1 “

c

a

b i f b

a

chg

ed

realizes to a cylinder. We will just use that

HnpK2,1q –

#

Z n P t0, 1u
0 otherwise

and that rcs resp. γ1 :“ rta, du` td, eu´ ta, eus is a generator of H0pK2,1q resp. H1pK2,1q

without calculating these groups explicitly.
Moreover,

K2,2 “

i

h c
g

f
b
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is acyclic (as it can be built from acyclic complexes with acyclic intersection at each
step). Hence

HnpK2,1q –

#

Z ¨ rcs – Z n “ 0
0 otherwise

.

The intersection

K2,1 XK2,2 “

i

h c
g

f
b

is a disjoint union of two acyclic complexes, so we have

HnpK2,1q –

#

Z ¨ rbs ‘ Z ¨ rcs – Z2 n “ 0
0 otherwise

.

For n ą 1, the Mayer–Vietoris sequence yields an exact sequence

0 – HnpK2,1q ‘HnpK2,2q Ñ HnpK2q Ñ Hn´1pK2,1 XK2,1q – 0,

so we indeed have HnpK2q – 0 for n ą 1. Moreover, H0pK2q “ Z ¨ rcs – Z since K2 is
connected.
Hence, the Mayer–Vietoris sequence for n ď 1 looks like:

0 Z ¨ γ1 H1pK2q Z ¨ rbs ‘ Z ¨ rcs ZrcK2,1s ‘ ZrcK2,1s Z ¨ rcs 0

rbs prcK2,1s,´rcK2,2sq

rcs prcK2,1s,´rcK2,2sq

B1 φ1

where cK2,k
for k P t1, 2u denotes the vertex c regarded as a 0-simplex of K2,k. This

yields an exact sequence

0 Ñ Z ¨ γ1 Ñ H1pK2q
B1
ÝÑ kerφ1 “ Z ¨ rc´ ds Ñ 0.

Now, unwinding the definition of the boundary map, one can check that γ2 :“ rta, bu`
tb, cu´ta, cus P H1pK2q is a preimage of rc´ds P H0pK2,1XK2,2q under B1.2 Thus, sending
rc´bs to γ2 yields a section of B1 and hence an isomorphismH1pK2q – Z¨γ1‘Z¨γ2 – Z

2.3

2Intuitively, γ1 is chosen to be the sum of two 1-chains which connect b and c in K2,1 resp. K2,2.
3In fact, every short exact sequence of abelian groups that is of the form 0 Ñ ZÑ AÑ ZÑ 0 splits
for algebraic reasons and thus the middle term is always isomorphic to Z2.
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Relative homology
By excision, we have H‚pK,K2q – H‚pK1, K1 XK2q. Now, C‚pK1, K1 XK2q is rather

simple:

. . . 3 2 1 0

. . . 0 Z ¨ rtf, g, ius ‘ Z ¨ rtg, h, ius Z ¨ rtg, ius 0
rtf, g, ius rtg, ius

rtg, h, ius ´rtg, ius

d1

where r´s denotes equivalence classes in CkpK1, K1 XK2q “ CkpK1q{CkpK1 XK2q.
Hence we have

HnpK1, K1 XK2q –

$

’

&

’

%

coker d1 – Z ¨ rtg, ius{Zrtg, ius – 0 n “ 1
ker d1 – Z ¨ rtf, g, iu ` tg, h, ius – Z n “ 2
0 otherwise

.

Let α :“ rtf, g, iu ` tg, h, ius for future reference.

Long exact sequence of the couple
Note that H0pKq – Z as K is connected. Moreover, we know that HnpKq – 0 for

n ą 2 as K is a 2-dimensional complex. For n P t1, 2u we consider the corresponding
part of the long exact sequence of the pair pK,K2q:

H2pK2q H2pKq H2pK,K2q H1pK2q H1pKq H1pK,K2q

H2pK2q H2pKq H2pK1, K1 XK2q H1pK2q H1pKq H1pK1, K1 XK2q

0 H2pKq Z ¨ α Z ¨ γ1 ‘ Z ¨ γ2 H1pKq 0

– – – – – –

– – – – – –

ι2 ρ2 B2

Unwinding definitions, one sees that B2pαq “ rtf, gu ` tg, hu ` th, iu ´ tf, ius which
corresponds to “going around the inner square once”. This cycle is equivalent to “going
around the outer square” in K2,4 i. e.

B2pαq “ rta, bu ` tb, cu ´ ta, cu ` ta, du ` td, eu ´ ta, eu`

ta, cu ´ tb, cu ´ ta, bu ` ta, du ` td, eu ´ ta, eus

“ 2 ¨ rta, du ` td, eu ´ ta, eus “ 2 ¨ γ1.

Hence B2 corresponds to the map ZÑ Z2 which sends k to p2k, 0q. This yields

H1pKq – cokerpB1q “
pZ ¨ γ1 ‘ Z ¨ γ2qäZ ¨ p2γ1, 0q – Z{2Z‘ Z.

4More precisely, one can assign signs to 2-simplices of K2 in a way what the cycle given by the sum of
these has ptf, gu ` tg, hu ` th, iu ´ tf, iu ´ pta, bu ` tb, cu ´ ta, cu ` ta, du ` td, eu ´ ta, eu ` ta, cu ´
tb, cu´ta, bu`ta, du`td, eu´ta, euq as its boundary, but we refrain from doing the long calculation
here.
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Moreover, we have 0 “ ker B1 “ im ρ2. Hence ker ρ2 “ H2pKq, but ker ρ2 “ im ι2 “ 0, so
H2pKq – 0.
All in all, we have:

HnpKq –

$

’

&

’

%

Z n “ 0
Z{2Z‘ Z n “ 1
0 otherwise

.
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