The universal property of $\mathcal{D}^-(\mathcal{A})$ based on Section 1.3.3 of Higher Algebra by Jacob Lurie

Aras Ergus

May 5, 2020

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

▲□▶▲□▶▲□▶▲□▶ □ のQの

Conventions

Contrary to the conventions of Higher Algebra, we will omit the nerve construction of 1-categories from our notation.

We will often decorate functor categories with some symbols to mean a full subcategory spanned by functors satisfying some property. Examples:

- Fun^{rex}: subcategory of right exact functors (i.e. those which preserve finite colimits).
- Fun^{|-|,II}: subcategory of functors which preserve geometric realizations and finite coproducts.

We fix an abelian category A with enough projective objects. Changing universes if necessary, we assume that A is small.

The main theorem

Definition (1.3.3.1)

Let C and C' be stable ∞ -categories with t-structures. A functor $F: C \to C'$ is called *right t-exact (rtex)* if it is exact (i.e. preserves finite limits and colimits) and $F(C_{\geq 0}) \subseteq C'_{\geq 0}$.

Theorem (1.3.3.2)

Let C be a stable ∞ -category equipped with a left complete t-structure.

Then

$$\begin{split} \mathsf{Fun}^{\textit{rtex},\mathcal{A}_{\textit{proj}}\mapsto\mathcal{C}^\heartsuit}(\mathcal{D}^-(\mathcal{A}),\mathcal{C}) \to \mathsf{Fun}^{\textit{rex}_{ab}}(\mathcal{A},\mathcal{C}^\heartsuit) \\ F \mapsto \tau_{\leqslant 0} \circ (F|\mathcal{D}^-(\mathcal{A})^\heartsuit) \end{split}$$

is an equivalence.

A proof sketch for the main theorem

$$\begin{aligned} \mathsf{Fun}^{\mathsf{rtex},\mathcal{A}_{\mathsf{proj}}\mapsto\mathcal{C}^\heartsuit}(\mathcal{D}^-(\mathcal{A}),\mathcal{C}) \\ & \stackrel{\texttt{1.3.3.11}}{\textcircled{\hspace{0.5mm}}} \uparrow \\ \mathsf{Fun}^{|-|,\mathrm{II},\mathcal{A}_{\mathsf{proj}}\mapsto\mathcal{C}^\heartsuit}(\mathcal{D}^-_{\geqslant 0}(\mathcal{A}),\mathcal{C}_{\geqslant 0}) & \stackrel{\texttt{1.3.3.8}}{\longleftrightarrow} \mathsf{Fun}^{\mathrm{II}}(\mathcal{A}_{\mathsf{proj}},\mathcal{C}^\heartsuit) \\ & \stackrel{\uparrow^{1.3.3.9}}{\overset{\texttt{\scale}}{\downarrow}} \\ & \mathsf{Fun}^{\mathsf{rex}_{\mathsf{ab}}}(\mathcal{A},\mathcal{C}^\heartsuit) \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

A lemma about geometric realizations

Lemma (1.3.3.10)

- 1. If an ∞ -category C admits finite coproducts and geometric realizations of simplicial objects, then it admits all finite colimits. The converse is true if C is an n-category for some $n \in \mathbb{N}$.
- If F: C → D is a functor between ∞-categories admitting finite coproducts and geometric realizations of simplicial objects that preserves finite coproducts and geometric realizations, then F is right exact. The converse is true if C and D are n-categories for some n ∈ N.

Proof of the geometric realization lemma

Proof sketch.

In order to construct all finite colimits from finite coproducts and geometric realizations, it is enough to construct coequalizers. Note there is a (non-full) inclusion $\iota: ([1] \rightrightarrows [0]) \hookrightarrow \Delta^{\operatorname{op}}$ of the coequalizer shape into $\Delta^{\operatorname{op}}$. Moreover, using the pointwise formula for Kan extensions, one can show that ι_1 exists because finite coproducts exist.

Hence $\operatorname{colim}_{[1]\rightrightarrows[0]} \simeq \operatorname{colim}_{\Delta^{\operatorname{op}}} \circ \iota_!$ exists.

For the part about *n*-categories, one shows that $\operatorname{colim}_{\Delta^{\operatorname{op}}} \simeq \operatorname{colim}_{\Delta^{\operatorname{op}}_{\leqslant n}} \circ \iota_{\leqslant n}^*$ using some connectivity estimates after applying a Yoneda embedding and notes that the latter is a finite colimit.

From right t-exact functors to right exact functors

Lemma (1.3.3.11)

Let $\mathcal{C},\,\mathcal{C}'$ be stable $\infty\text{-categories}$ equipped with t-structures. Then

- 1. If C is right bounded, then restriction along $C_{\geq 0} \hookrightarrow C$ induces an equivalence $\operatorname{Fun}^{\operatorname{rtex}}(C, C') \simeq \operatorname{Fun}^{\operatorname{rex}}(C_{\geq 0}, C'_{\geq 0})$.
- If C and C' are left complete, then C≥0 and C'≥0 admit geometric realizations of simplicial objects, and a functor F: C≥0 → C'≥0 is right exact if and only if it preserves finite coproducts and geometric realizations.

Proof the "rtex to rex" lemma, part 1

Proof sketch for (1).

Since $C = \bigcup_n C_{\geq -n}$ by right boundedness, we have

 $\mathsf{Fun}^{\mathsf{rtex}}(\mathcal{C},\mathcal{C}')\simeq\mathsf{lim}(\ldots\to\mathsf{Fun}^{\mathsf{rex}}(\mathcal{C}_{\geqslant-1},\mathcal{C}'_{\geqslant-1})\to\mathsf{Fun}^{\mathsf{rex}}(\mathcal{C}_{\geqslant0},\mathcal{C}'_{\geqslant0})).$

A D N A 目 N A E N A E N A B N A C N

Now the tower on the RHS is essentially constant as $\operatorname{Fun}^{rex}(\mathcal{C}_{\geq -n-1}, \mathcal{C}'_{\geq -n-1}) \to \operatorname{Fun}^{rex}(\mathcal{C}_{\geq n}, \mathcal{C}'_{\geq n})$ has a (homotopy) inverse given by "conjugation by Σ ".

From right t-exact functors to right exact functors

Lemma (1.3.3.11)

Let $\mathcal{C},\,\mathcal{C}'$ be stable $\infty\text{-categories}$ equipped with t-structures. Then

- 1. If C is right bounded, then restriction along $C_{\geq 0} \hookrightarrow C$ induces an equivalence $\operatorname{Fun}^{\operatorname{rtex}}(C, C') \simeq \operatorname{Fun}^{\operatorname{rex}}(C_{\geq 0}, C'_{\geq 0})$.
- If C and C' are left complete, then C≥0 and C'≥0 admit geometric realizations of simplicial objects, and a functor F: C≥0 → C'≥0 is right exact if and only if it preserves finite coproducts and geometric realizations.

Proof the "rtex to rex" lemma, part 2

Proof sketch for (2).

Left completeness means that

$$\mathcal{C}_{\geqslant 0} \simeq \mathsf{lim}(\ldots \to (\mathcal{C}_{\geqslant 0})_{\leqslant 1} \to (\mathcal{C}_{\geqslant 0})_{\leqslant 0}).$$

Moreover, each $(C_{\geq 0})_{\leq n}$ is an finitely cocomplete (n + 1)-category. Hence, by \land Lemma 1.3.3.10 about geometric realizations, they all admit geometric realizations. Those are preserved by the truncation functors in the tower above, so C admits geometric realizations too.

The statement about preservation of colimits follows by a similar argument reducing the statement to the case of *k*-categories by virtue of the description of $C_{\geq 0}$ as a limit of such.

The t-structure on $\mathcal{D}^-(\mathcal{A})$

Proposition (1.3.3.16)

The standard t-structure on $\mathcal{D}^-(\mathcal{A})$ is right bounded and left complete.

Remark

Left completeness is ultimately reduced to the convergence of Postnikov towers of spaces by embedding $\mathcal{D}^{-}(\mathcal{A})$ into the derived category of a presheaf category which we will be described in the next slide.

A model for Ind-objects

Proposition (1.3.3.13)

 $Ind(\mathcal{A})$ can be identified with $\mathcal{A}^{\wedge} := Fun^{\times}(\mathcal{A}_{proj}^{op}, Set)$ which is again an abelian category with enough projective objects.

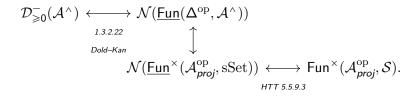
Remark (1.3.3.15)

 $\mathcal{D}^{-}(\mathcal{A})$ can be identified with the full subcategory of $\mathcal{D}^{-}(\mathcal{A}^{\wedge})$ consisting of objects whose homology belongs to (the Yoneda image of) \mathcal{A} .

Product preserving presheaves

Proposition (1.3.3.14)

We have equivalences



Moreover, the restriction of the composite along the inclusion $\mathcal{A}_{\text{proj}} \hookrightarrow \mathcal{D}^{-}(\mathcal{A}^{\wedge})$ corresponds to the Yoneda embedding.

A D N A 目 N A E N A E N A B N A C N

A proof sketch for the main theorem

$$\begin{aligned} \mathsf{Fun}^{\mathsf{rtex},\mathcal{A}_{\mathsf{proj}}\mapsto\mathcal{C}^\heartsuit}(\mathcal{D}^-(\mathcal{A}),\mathcal{C}) \\ & \stackrel{\texttt{1.3.3.11}}{\textcircled{\hspace{0.5mm}}} \uparrow \\ \mathsf{Fun}^{|-|,\mathrm{II},\mathcal{A}_{\mathsf{proj}}\mapsto\mathcal{C}^\heartsuit}(\mathcal{D}^-_{\geqslant 0}(\mathcal{A}),\mathcal{C}_{\geqslant 0}) & \stackrel{\texttt{1.3.3.8}}{\longleftrightarrow} \mathsf{Fun}^{\mathrm{II}}(\mathcal{A}_{\mathsf{proj}},\mathcal{C}^\heartsuit) \\ & \stackrel{\uparrow^{1.3.3.9}}{\overset{\texttt{\scale}}{\downarrow}} \\ & \mathsf{Fun}^{\mathsf{rex}_{\mathsf{ab}}}(\mathcal{A},\mathcal{C}^\heartsuit) \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

A more precise characterization

We still need to prove:

```
Theorem (1.3.3.8)
```

Let ${\mathcal C}$ be an $\infty\text{-category}$ admitting geometric realizations of simplicial objects.

Then

- 1. The restriction functor $\operatorname{Fun}^{|-|}(\mathcal{D}^{-}_{\geq 0}(\mathcal{A}), \mathcal{C}) \to \operatorname{Fun}(\mathcal{A}_{\operatorname{proj}}, \mathcal{C})$ is an equivalence.
- A functor F ∈ Fun^{|-|}(D⁻_{≥0}(A), C) preserves finite coproducts if and only if its restriction to A_{proj} does.

One last lemma

Part 1 is a corollary of the following:

Lemma (1.3.3.17)

The essential image of $\mathcal{D}_{\geq 0}^{-}(\mathcal{A})$ in $\operatorname{Fun}^{\times}(\mathcal{A}_{proj}^{\operatorname{op}}, \mathcal{S})$ is the smallest full subcategory of $\operatorname{Fun}(\mathcal{A}_{proj}^{\operatorname{op}}, \mathcal{S})$ that contains the image of the Yoneda embedding and is closed under geometric realizations.

Proof sketch.

The essential image contains the image of the Yoneda embedding. • Lemma 1.3.3.16 and • Lemma 1.3.3.11 imply that it is closed under

geometric realizations.

Moreover, (the image of) every object $X \in \mathcal{D}_{\geq 0}^{-}(\mathcal{A})$ is equivalent to the geometric realization of the simplicial object in $\mathcal{A}_{\text{proj}}$ that corresponds to (the chain complex underlying) X under the Dold–Kan correspondence.

A more precise characterization

Theorem (1.3.3.8)

Let $\mathcal C$ be an ∞ -category admitting geometric realizations of simplicial objects.

Then

- 1. The restriction functor $\operatorname{Fun}^{|-|}(\mathcal{D}^{-}_{\geq 0}(\mathcal{A}), \mathcal{C}) \to \operatorname{Fun}(\mathcal{A}_{proj}, \mathcal{C})$ is an equivalence.
- A functor F ∈ Fun^{|-|}(D⁻_{≥0}(A), C) preserves finite coproducts if and only if its restriction to A_{proj} does.

A D N A 目 N A E N A E N A B N A C N

Proof of part 2 of the more precise characterization

Proof sketch.

Let $F: \mathcal{D}_{\geq 0}^{-}(\mathcal{A}) \to \mathcal{C}$ be a functor that preserves geometric realizations such that $F' := F|\mathcal{A}_{\text{proj}}$ preserves finite coproducts. We need to show that F preserves finite coproducts. By possibly "extending" \mathcal{C} by virtue of HTT 5.3.5.7, we may assume that it has all colimits. Then HTT 5.5.8.15 says that F', as a

functor which preserves finite coproducts, extends to a functor in $\mathsf{Fun}^{\mathsf{cocont}}(\mathsf{Fun}^{\times}(\mathcal{A}_{\mathsf{nroi}}^{\mathrm{op}}, \mathcal{S}), \mathcal{C}).$

Now restricting back to $\mathcal{D}_{\geq 0}^{-}(\mathcal{A}) \subseteq \mathcal{D}_{\geq 0}^{-}(\mathcal{A}^{\wedge}) \simeq \operatorname{Fun}^{\times}(\mathcal{A}_{\operatorname{proj}}^{\operatorname{op}}, \mathcal{S})$, we see that *F* itself also preserves finite coproducts. \Box

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A proof sketch for the main theorem

$$\begin{aligned} \mathsf{Fun}^{\mathsf{rtex},\mathcal{A}_{\mathsf{proj}}\mapsto\mathcal{C}^\heartsuit}(\mathcal{D}^-(\mathcal{A}),\mathcal{C}) \\ & \stackrel{\texttt{1.3.3.11}}{\textcircled{\hspace{0.5mm}}} \uparrow \\ \mathsf{Fun}^{|-|,\mathrm{II},\mathcal{A}_{\mathsf{proj}}\mapsto\mathcal{C}^\heartsuit}(\mathcal{D}^-_{\geqslant 0}(\mathcal{A}),\mathcal{C}_{\geqslant 0}) & \stackrel{\texttt{1.3.3.8}}{\longleftrightarrow} \mathsf{Fun}^{\mathrm{II}}(\mathcal{A}_{\mathsf{proj}},\mathcal{C}^\heartsuit) \\ & \stackrel{\uparrow^{1.3.3.9}}{\overset{\texttt{\scale}}{\downarrow}} \\ & \mathsf{Fun}^{\mathsf{rex}_{\mathsf{ab}}}(\mathcal{A},\mathcal{C}^\heartsuit) \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶