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Conventions

The labeling of statements refers to the numbering in Bousfield's paper.

Warning

What the category Sp of spectra is is intentionally kept vague.

Depending on whether Sp is the stable homotopy category, a point-set model or the
oo-category of spectra, the statements may mean slightly different things and may
be stronger or weaker.

Bousfield uses the stable homotopy category and CW-spectra.

Assumption

The smash product A: Sp x Sp — Sp is assumed to be “homotopically correct”, in
particular exact in both variables.

We fix a spectrum E for the rest of the talk.
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E-equivalences

Definition
A map f: X — Y of spectra is called an E-equivalence if E.f: E.X — E,Y is an
isomorphism.

We would like to have have a category Spg equipped with a “localization functor”
(=)e: Sp — Spg sit.

f: X > Y is an E-equivalence <= fg: Xg — YE is an equivalence.

Spoiler
In the end, we will be able to realize the target of the localization functor as the full
subcategory of Sp consisting of “E-local” spectra.
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Example (Proposition 2.9)

Each spectrum X sits in a homotopy pullback square

X —— Hp prime XS/P

| L

Xsg — (Hp prime XS/p)SQ

a.k.a. an “arithmetic square”.
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Example (a consequence of Theorem 6.6)

Let E be a connective ring spectrum such that mgE =~ Z/n for some n > 2.
Let Y be a connective spectrum with finitely generated homotopy groups.
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Why should we care about E-equivalences? (Il)

Example (a consequence of Theorem 6.6)

Let E be a connective ring spectrum such that mgE =~ Z/n for some n > 2.
Let Y be a connective spectrum with finitely generated homotopy groups.
Then the E-based Adams spectral sequence for Y converges to 7 Yg/,.
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E-acyclicity and E-locality

Definition
A spectrum X is called
e E-acyclic if E,X =0,ie. EA X ~0.

* E-local if for each E-equivalence f: A— B, f*: [B,X]s — [A,X]s is a
bijection.

Lemma

A map f: X — Y is an E-equivalence if and only if its homotopy (co)fiber is
E-acyclic.

Corollary

A spectrum X is E-local iff for every E-acyclic spectrum A, [A, X]e = 0.
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Definition
A spectrum X is called
e F-acyclic if E,X =0,ie. EA X ~0.
* E-local if for each E-equivalence f: A— B, f*: [B,X]s — [A,X]s is a
bijection.

Lemma
A map f: X — Y is an E-equivalence if and only if its homotopy (co)fiber is

E-acyclic.

Corollary
A spectrum X is E-local iff for every E-acyclic spectrum A, [A, X]s = 0.
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A class of E-local spectra

Lemma (Lemma 1.3)
If E is a ring spectrum (up to homotopy), then all E-module spectra are E-local.

Proof.
Let A be an E-acyclic spectrum, f: A — X.
Then, up to homotopy, f can be factored as

ALErA E A BN B X 2

Since A is E-acyclic, E A A~ 0.
Thus f factors through 0, so f ~ 0.
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The dual statements hold for E-acyclic spectra.
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Fact (Lemmas 1.4-1.8)
The subcategory Spg of E-local spectra is closed under

* homotopy (co)fibers,

® homotopy limits,
® extensions,

® retracts.

Remark
The dual statements hold for E-acyclic spectra.

Warning
In general, Spg is not closed under smash products.
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The existence theorem
Theorem (Theorem 1.1)
There are functors

* £(—): Sp — Sp (E-acyclization) which lands in E-acyclic spectra,
* (—)e: Sp — Sp (E-localization) which lands in E-local spectra,

such that for each spectrum X there exists a natural homotopy (co)fiber sequence
Ox nx
X = X = XE.
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Theorem (Theorem 1.1)

There are functors

* £(—): Sp — Sp (E-acyclization) which lands in E-acyclic spectra,
® (—)e: Sp — Sp (E-localization) which lands in E-local spectra,

such that for each spectrum X there exists a natural homotopy (co)fiber sequence

(%)
EX 25 XS Xe.
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Have: hocofiber sequence g X bx, X X Xg s.t. gX is E-acyclic and Xg is E-local.

Corollary

nx: X — Xg is an E-equivalence.
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Have: hocofiber sequence g X bx, X X Xg s.t. gX is E-acyclic and Xg is E-local.

Corollary
nx: X — Xg is an E-equivalence.

Proof.
Smashing the localization sequence with E yields a homotopy (co)fiber sequence

0~ E A X E2% F A X B2 F A X,
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ne: X — Xg is an E-equivalence.

Have: hocofiber sequence g X bx, X X Xg s.t. gX is E-acyclic and Xg is E-local.

Corollary
nx: X — Xg is an E-equivalence.

Proof.
Smashing the localization sequence with E yields a homotopy (co)fiber sequence

0~ E A X E2% F A X B2 F A X,

so Exnx = m«(E A nx) is an equivalence. O
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Have: hocofiber sequence g X bx, X Xg s.t. gX is E-acyclic and Xg is E-local.

Corollary
The functor (—)g: Sp — Sp is idempotent (up to homotopy).



Localization
of spectra

Idempotency of the localization functor

Aras Ergus

Have: hocofiber sequence g X bx, X Xg s.t. gX is E-acyclic and Xg is E-local.

Corollary
The functor (—)g: Sp — Sp is idempotent (up to homotopy).

Proof.
nxe : Xe — (Xg)e is an E-equivalence between E-local spectra.
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Idempotency of the localization functor

Have: hocofiber sequence g X bx, X Xg s.t. gX is E-acyclic and Xg is E-local.

Corollary
The functor (—)g: Sp — Sp is idempotent (up to homotopy).

Proof.
nxe : Xe — (Xg)e is an E-equivalence between E-local spectra.
So it's an equivalence. O
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Have: hocofiber sequence gX 9% X X Xe st g X is E-acyclic and Xg is E-local.

Corollary
nx: X — Xg is (up to homotopy) initial among maps from X to an E-local
spectrum.
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Have: hocofiber sequence gX 9% X X Xe st g X is E-acyclic and Xg is E-local.

Corollary
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(—)e: Sp — Spe is left adjoint to Spg < Sp.

Have: hocofiber sequence gX 9% X X Xe st g X is E-acyclic and Xg is E-local.

Corollary

nx: X — Xg is (up to homotopy) initial among maps from X to an E-local
spectrum.

Proof.
If Y is E-local, then n}: [X, Y] = [Xg, Y] since ng is an E-equivalence. O

Corollary
E-localization is left adjoint to the inclusion Spg < Sp of E-local spectra.
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Have: hocofiber sequence gX Ox, x X, Xg s.t. X is E-acyclic and Xg is E-local.

Corollary
Ox: X — X is (up to homotopy) terminal among maps from an E-acyclic spectrum
to X.
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Have: hocofiber sequence g X bx, X X Xg s.t. e X is E-acyclic and Xg is E-local.

Corollary

Ox: X — X is (up to homotopy) terminal among maps from an E-acyclic spectrum
to X.

Corollary
E-acyclization is right adjoint to the inclusion Spg — Sp of E-acyclic spectra.
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How to construct localizations?
Recipe for constructing Xg.

[aE, Y]. = 0.

® Construct a spectrum aE such that [A, Y], = 0 for all E-acyclic A iff
® “Kill" all the maps from aE to X.

We'll sketch these constructions for CW-spectra (i.e. sequential spectra (X,)npen s.t.
every level X, is a CW-complex and the structure maps X, — ¥ X1 are
inclusions of subcomplexes).

«4Or «F>r « >

« =

DA



Localization
of spectra

Aras Ergus

How to construct localizations?

Recipe for constructing Xg.

@ Construct a spectrum aE such that [A, Y]. = 0 for all E-acyclic A iff
[aE, Y]. = 0.



Localization
of spectra

Aras Ergus

How to construct localizations?

Recipe for constructing Xg.

@ Construct a spectrum aE such that [A, Y]. = 0 for all E-acyclic A iff
[aE, Y]. = 0.
® “Kill" all the maps from aE to X.



Localization
of spectra

Aras Ergus

How to construct localizations?

Recipe for constructing Xg.

@ Construct a spectrum aE such that [A, Y]. = 0 for all E-acyclic A iff
[aE, Y]. = 0.
® “Kill" all the maps from aE to X.

We'll sketch these constructions for CW-spectra (i.e. sequential spectra (X,)npen S.t.
every level X, is a CW-complex and the structure maps XX, — X X,1 are
inclusions of subcomplexes).
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“The" acyclic spectrum

Fix an infinite cardinal o that is at least equal to | ®nez ThE].

Definition

Let (Kj)ics a system of representatives for the equivalence classes of E-acyclic
spectra with at most o cells.

Set

aE = \/ K..

i€l
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We want to show that [A, Y]. = 0 for every E-acyclic spectrum A.
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Let Y be a spectrum s.t. [aE, Y], = 0.
We want to show that [A, Y]. = 0 for every E-acyclic spectrum A.

.. To do that, we would like to construct a (transfinite) filtration
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O A 1 =A,u W, for a subspectrum W, c As.t.
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aE "generates” all E-acyclic spectra (I)

Let Y be a spectrum s.t. [aE, Y], = 0.
We want to show that [A, Y]. = 0 for every E-acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration
0=AicAic...cA,=A

by E-acyclic CW-subspectra s.t.
O A 1 =A,u W, for a subspectrum W, c As.t.
W, d A,
® W, has at most o cells,
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Let Y be a spectrum s.t. [aE, Y], = 0.
We want to show that [A, Y]. = 0 for every E-acyclic spectrum A.

.. To do that, we would like to construct a (transfinite) filtration
0=AicAic...cA,=A

by E-acyclic CW-subspectra s.t.
O A 1 =A,u W, for a subspectrum W, c As.t.
o W, ¢ A,
® W, has at most o cells,
* Ex(Ay1/Ay) = Ex(W, /(W) 0 Ay)) = 0.
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Let Y be a spectrum s.t. [aE, Y], = 0.
We want to show that [A, Y]. = 0 for every E-acyclic spectrum A.

.. To do that, we would like to construct a (transfinite) filtration
0=AicAic...cA,=A

by E-acyclic CW-subspectra s.t.
O A 1 =A,u W, for a subspectrum W, c As.t.
o W, ¢ A,
® W, has at most o cells,
* Ex(Ay1/Ay) = Ex(W, /(W) 0 Ay)) = 0.

® Ay = ;-\ Ai for limit ordinals .
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For a moment, assume that we do have filtration 0 = Ay c Ay < ... c A, = A by
E-acyclic CW-subspectra s.t.
O A, 1 =A,u W, for a subspectrum W, c As.t.
e W, ¢ A,
® W, has at most o cells,
* Ei(Ay41/Ay) = B (W, /(Wy 0 Ay)) = 0.

@ Ay = ;-\ Ai for limit ordinals .
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For a moment, assume that we do have filtration 0 = Ay c Ay < ... c A, = A by
E-acyclic CW-subspectra s.t.
O A, 1 =A,u W, for a subspectrum W, c As.t.
e W, ¢ A,
® W, has at most o cells,
* Ei(Ayi1/Ay) = E.(W, /(W 1 Ay)) = 0.
@ Ay = ;-\ Ai for limit ordinals .
Note that the successor step guarantees that the subquotients A,1/A, are
E-acyclic spectra with at most o cells, so they are all “summands” of aE = \/; K;.
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aE "generates” all E-acyclic spectra (II)

For a moment, assume that we do have filtration 0 = Ay c Ay < ... c A, = A by
E-acyclic CW-subspectra s.t.
O A, 1 =A,u W, for a subspectrum W, c As.t.
W, d A,
® W, has at most o cells,
® Ei(Ay11/Ay) = Ex (W, /(W, 0 Ay)) = 0.
@ Ay = ;-\ Ai for limit ordinals .

Note that the successor step guarantees that the subquotients A,1/A, are
E-acyclic spectra with at most o cells, so they are all “summands” of aE = \/; K;.
Thus, by (transfinite) induction along this filtration, we can show that [A, Y]s = 0 if
[aE, Y]. = 0.



How to do the successor step?

Lemma
Let A be a CW-spectrum.

Let B — A a proper closed subspectrum with E.(A/B) =~ 0.
Let e be a cell of A that is not in B.

Then there exists a CW-subspectrum W < A such that:
® W contains e.

e W has at most o cells.
e E,(W/(WnB)) 0.
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Let A be a CW-spectrum.

Let B < A a proper closed subspectrum with E,(A/B) = 0.
Let e be a cell of A that is not in B.

Then there exists a CW-subspectrum W < A such that:

e W contains e.
e W has at most o cells.
e E,(W/(WnB)) 0.
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Proof.
We will construct a sequence (W,,) ey of CW-subspectra such that

® ecach W, contains e,

® cach W, has at most o cells,
o E.(W,/(Wpn B)) = Ex(Whi1/ (W1 n B)) is zero for all n,
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® ecach W, contains e,
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and set W =, W,.
Let Wy be a CW-subspectrum of A with at most o cells that contains e.
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Proof of the lemma needed for the successor step

Proof.
We will construct a sequence (W,,) ey of CW-subspectra such that

® ecach W, contains e,
® cach W, has at most o cells,
o E.(W,/(Wpn B)) = Ex(Whi1/ (W1 n B)) is zero for all n,

and set W =, W,.

Let Wy be a CW-subspectrum of A with at most o cells that contains e.

Given W,, consider x € E,(W,/(W, n B)). As E.(A/B) = 0, there exists a finite
CW-subspectrum F, < X s.t. x maps to 0 in E.((W, u F)/((W, U Fx) n B)).
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Proof of the lemma needed for the successor step

Proof.
We will construct a sequence (W,,) ey of CW-subspectra such that

® ecach W, contains e,
® cach W, has at most o cells,
o E.(W,/(Wpn B)) = Ex(Whi1/ (W1 n B)) is zero for all n,
and set W =, W,.
Let Wy be a CW-subspectrum of A with at most o cells that contains e.
Given W,, consider x € E,(W,/(W, n B)). As E.(A/B) = 0, there exists a finite
CW-subspectrum F, < X s.t. x maps to 0 in E.((W, u F)/((W, U Fx) n B)).

Let W11 := W, u |, Fx, which has at most o cells because there are at most o
possibilities for x. O
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Recap of the construction of Xg

We have constructed a spectrum aE such that [aE, Y]s = 0 iff [A, Y]s = 0 for every
E-acyclic spectrum A.
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Aras Ergus Recap of the construction of Xg

We have constructed a spectrum aE such that [aE, Y]s = 0 iff [A, Y]s = 0 for every
E-acyclic spectrum A.

Now we want to construct the E-localization Xg of X by “coning off” all maps from
aE to X.
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Given a (CW-)spectrum X, construct Xg by (transfinite) induction as follows:
* Let Xp = X.
* Given X,, define X,41 to be the (homotopy) cofiber of
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Given a (CW-)spectrum X, construct Xg by (transfinite) induction as follows:
; * Let Xp := X.
Comtin * Given X,, define X,41 to be the (homotopy) cofiber of

\/ \/ 5,- \/n\/[f]f Xa-
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Pick a cardinal x larger than the number of cells in aE. Set Xg = X,.
This guarantees that every map ¥'aE — Xg factors through X; for some i < k,
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The small object argument

Aras Ergus

Given a (CW-)spectrum X, construct Xg by (transfinite) induction as follows:
* Let Xp = X.
* Given X,, define X,41 to be the (homotopy) cofiber of

\/ \/ 5,- \/n\/[f]f Xa-

neZ [fle[aE,Xa]n

e At limit ordinals A set X := hocolim;.) X;.

Pick a cardinal x larger than the number of cells in aE. Set Xg = X,.
This guarantees that every map ¥'aE — Xg factors through X; for some i < k, so is
trivial because it gets coned off at the next stage.
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Bousfield classes
Let F be another spectrum.

Definition
conditions holds:

E and F are called Bousfield equivalent if one of the following equivalent
@ A spectrum is E-acyclic iff it is F-acyclic.

@ A map between spectra is an E,-equivalence iff it is an F,-equivalence.
E and denoted by (E).

The equivalence class of E w.r.t. this relation will be called the Bousfield class of
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Bousfield classes

Let F be another spectrum.

Definition
E and F are called Bousfield equivalent if one of the following equivalent
conditions holds:

@ A spectrum is E-acyclic iff it is F-acyclic.

@ A map between spectra is an E,-equivalence iff it is an F.-equivalence.
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Let F be another spectrum.

Definition
E and F are called Bousfield equivalent if one of the following equivalent
conditions holds:

@ A spectrum is E-acyclic iff it is F-acyclic.

@ A map between spectra is an E,-equivalence iff it is an F.-equivalence.
The equivalence class of E w.r.t. this relation will be called the Bousfield class of
E and denoted by (E).
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The set of Bousfield classes as a lattice

Fact
The set (!) of Bousfield classes of spectra is a lattice with

e join induced by wedge of spectra,

® meet induced by smash product of spectra.
In particular, {0) is the minimal element and {S) is the maximal element.
Definition
We define a partial order on the set of Bousfield clasess by declaring (E) < (F) if
every F-acyclic spectrum is E-acyclic.
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The set of Bousfield classes as a lattice

Aras Ergus

Fact
The set (!) of Bousfield classes of spectra is a lattice with

e join induced by wedge of spectra,

® meet induced by smash product of spectra.
In particular, {0) is the minimal element and {S) is the maximal element.
Definition
We define a partial order on the set of Bousfield clasess by declaring (E) < (F) if
every F-acyclic spectrum is E-acyclic.

Remark
This order agrees with the one coming from the lattice structure.
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Two abelian groups G; and G, have the same type of acyclicity if

® G is a torsion group iff Gy is, and
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® G is a torsion group iff Gy is, and
e for each prime p, Gy is uniquely p-divisible iff G, is.
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Definition
Two abelian groups G; and G, have the same type of acyclicity if
® G is a torsion group iff Gy is, and

e for each prime p, Gy is uniquely p-divisible iff G, is.

Fact (Proposition 2.3)

For abelian groups Gy and Gy, the following are equivalent:
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Definition
Two abelian groups G; and G, have the same type of acyclicity if

® G is a torsion group iff Gy is, and
e for each prime p, Gy is uniquely p-divisible iff G, is.

Fact (Proposition 2.3)
For abelian groups Gy and Gy, the following are equivalent:

@® Gi1 and G, have the same type of acyclicity.
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Acyclicity types of abelian groups

Definition
Two abelian groups G; and G, have the same type of acyclicity if

® G is a torsion group iff Gy is, and
e for each prime p, Gy is uniquely p-divisible iff G, is.

Fact (Proposition 2.3)
For abelian groups Gy and Gy, the following are equivalent:

@® Gi1 and G, have the same type of acyclicity.

® (SG1) = (SG).
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Acyclicity types of abelian groups

Aras Ergus

Definition
Two abelian groups G; and G, have the same type of acyclicity if

® G is a torsion group iff Gy is, and
e for each prime p, Gy is uniquely p-divisible iff G, is.

T

Localizations
w.r.t. Moore
spectra

Fact (Proposition 2.3)
For abelian groups Gy and Gy, the following are equivalent:

@® Gi1 and G, have the same type of acyclicity.

® (SG1) = (SG).
@ SGi and SGy yield equivalent localization functors on Sp
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Remark
Every acyclicity class is represented by one of the following:

® [, Z/p for aset J of primes,
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An explicit description of acyclicity types

Remark
Every acyclicity class is represented by one of the following:

® [, Z/p for aset J of primes,
® Zyy for a set J of primes.



Localization
of spectra

Aras Ergus

The Bousfield lattic

Localizations
w.r.t. Moore
spectra

Complements of acyclicity types (1)

Definition
The complement of an acyclicity type (or by abuse of terminology, an abelian

group) is defined as follows:
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Definition
The complement of an acyclicity type (or by abuse of terminology, an abelian

group) is defined as follows:
o |f HPEJ Z/p is in the class for a set J of primes, then the complement contains

Zy)-
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Complements of acyclicity types (1)

Definition
The complement of an acyclicity type (or by abuse of terminology, an abelian

group) is defined as follows:
o |f HPEJ Z/p is in the class for a set J of primes, then the complement contains

Ly yy.-
® If Z,y is in the class for a set J of primes, then the complement contains

HpEJ Z/p
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Aras Ergus

Definition
The complement of an acyclicity type (or by abuse of terminology, an abelian

group) is defined as follows:
o |f HPEJ Z/p is in the class for a set J of primes, then the complement contains

Localizations

w.r.t. Moore
spectra Z(J)
® If Z,y is in the class for a set J of primes, then the complement contains
HpeJ Z/p
Example

(The acyclicity classes of) Q and [ [, ,ime Z/pP are complements of each other.
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Remark

. y . , .
Localization Let G be an abelian group and G’ an abelian group in the complement of its
T, Meee acyclicity type.

spectra
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Complements of acyclicity types (I1)

Remark
Let G be an abelian group and G’ an abelian group in the complement of its
acyclicity type.
Then:
* G@® G’ and Z have the same type of acyclicity.
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Remark
Let G be an abelian group and G’ an abelian group in the complement of its

Localizations

w.r.t. Moore aCyCl |C|ty type

spectra

Then:
* G@® G’ and Z have the same type of acyclicity.

* (SG v SG") =(S).
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Theorem (Proposition 2.9)

Each spectrum X sits in a homotopy pullback square

- )
Xe Hp prime XE/\S/P

More cool
results ’

XersQ — (Hp primeXE/\S/p) -

where all the maps are induced by corresponding localizations.
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Proof sketch.

XE

(E AS/p)-eq. fa. p

More cool

[T, .ime XE
_ p prime AS/p
results (E A SQ)-eq. (f n8/p)-ea. fa. p ’

(E A SQ)-eq.
XE/\SQ (Hp prime XEAS/p)E/\SQ

The homotopy pullback P is E-local as a limit of E-local spectra, so it's enough to
show that Xg — P is an E-equivalence. []
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e Assume that E is connective.
spectra Let X be a connective spectrum.
More cool
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and
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e Theorem (Theorem 3.1)

L Assume that E is connective.
spectra Let X be a connective spectrum.
M | ~

remies Then Xg >~ Xs(@uezmif)-



Localization
of spectra

Aras Ergus

More cool
results

Localizations of connective spectra w.r.t.
connective spectra

Theorem (Theorem 3.1)
Assume that E is connective.
Let X be a connective spectrum.
Then XE ~ XS(@neZﬂ'nE)'
Corollary

Let G be an abelian group, X a connective spectrum.
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Localizations of connective spectra w.r.t.
connective spectra

Theorem (Theorem 3.1)

Assume that E is connective.
Let X be a connective spectrum.
Then XE ~ XS(@neZﬂ'nE)'

Corollary

Let G be an abelian group, X a connective spectrum.
Then XHG jat XSG-
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A “telescope theorem”

Theorem (Proposition 4.2)
Let p be a prime number.

Let A,: X2(P=US/p — S/p for p odd resp. A,: £8S/2 — S/2 for p = 2 be the
Adams map.
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e T A “telescope theorem

Theorem (Proposition 4.2)

Let p be a prime number.

Let Ap: y2(P-1S/p — S/p for p odd resp. Ap: ¥8S/2 — S/2 for p = 2 be the
Adams map.

More cool Then the natural map

results

- degApAp

S/p — hocolim(S/p ——% Y~ dee4s /p

2—2 deg Ap Ap
—

is a KU-localization.
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